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The Riemannian manifold structure of the classical (i.e. Einsteinian) spacetime
is derived from the structure of an abstract infinite-dimensional separable Hilbert
space S. For this S is first realized as a Hilbert space H of functions of abstract
parameters. The spaceH is associated with the space of states of a macroscopic test-
particle in the universe. The spatial localization of state of the particle through its
interaction with the environment is associated with the selection of a submanifold M
of realization H. The submanifold M is then identified with the classical space (i.e.
a space-like hypersurface in spacetime). The mathematical formalism is developed
which allows recovering of the usual Riemannian geometry on the classical space
and, more generally, on space and time from the Hilbert structure on S. The
specific functional realizations of S are capable of generating spacetimes of different
geometry and topology. Variation of the length-type action functional on S is shown
to produce both the equation of geodesics on M for macroscopic particles and the
Schrödinger equation for microscopic particles.
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1 Introduction

We take for granted that physical events take place in spacetime. Mathematically
this is reflected in realization of physical quantities as functions (in a broad sense)
of spacetime points. The shortcomings of such a realization are well known. In
particular, the position of a particle in quantum field theory (QFT) is only defined
to energies less than the particle’s mass. The concept of a field at a point is ill-defined
as well.

By now the string/M-theory is believed by many to be the leading successor of
the QFT. Not only does it deal successfully with the divergences plaguing QFT, but
it also leads to a unified approach to the known interactions. However, one of the
main objections to the string/M-theory is that it requires the notion of spacetime
to begin with. In particular, the theory, while deducing gravity, does not deduce
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the spacetime which therefore remains classical. As Brian Green puts it in Ref.[1]:
“Finding the correct mathematical apparatus for formulating string theory without
recourse to a pre-existing notion of space and time is one of the most important
issues facing string theorists. An understanding of how the space and time emerge
would take us a huge step closer to answering the crucial question of which geometric
form actually does emerge.”

The situation in string/M-theory is reminiscent of non-relativistic quantum me-
chanics (QM). While the former theory requires the classical background for its
existence, the latter seems to require the classical behavior of the measuring de-
vices. The fundamental problem of deducing the classical world from the quantum
one is therefore common to both theories.

The concept of spacetime in the classical theory is intimately related to the ma-
terial content of spacetime. In fact, in the theory of gravity matter together with the
initial data determines the Riemannian structure of spacetime. The Riemannian, or,
more precisely, the pseudo-Riemannian structure will be also called the macroscopic

structure of spacetime. A spacetime with such a structure will be called classical.
By contrast, the microscopic structure of spacetime is expected to be deter-

mined (and, in fact, defined) by the quantum theory. The microscopic structure,
although currently unknown, must also depend on the state of matter in spacetime.
This follows already from the expected transition to the macroscopic structure, in
accordance with the correspondence principle.

The localization of space wave packets is essential in bridging the gap between
the “macro” and the “micro” structures of spacetime in the QM approximation. In
fact, to physically (i.e. experimentally) determine the macroscopic structure one
must be able to identify points of spacetime. To physically identify a point is to
observe an event at the point. Typically, observations of this kind are done by
means of scattering experiments. As a result of a high resolution scattering event
needed to identify the point, the scattering center, i.e. a particle, assumes a localized

state. That is, within the QM approximation the state function of the particle at
the moment of interaction is a wave packet localized in space.

In a hypothetical situation, where no spatially localized wave packets are present
in a region Ω of spacetime, it becomes meaningless to refer in a physical way to a
particular point of Ω. In fact, no event at a point of Ω is then observed. As a result,
the Riemannian structure itself becomes unobservable.

We are then faced with the following three options. One could continue insist-
ing that the region Ω has underlying structure of a four-dimensional Riemannian
manifold, although unobservable. Or else, one could say that the region has no
manifold structure at all. Finally, one could argue that the geometry in Ω is a new,
“quantum” geometry.

If the last option (investigated here) is chosen, it is important to be able to
“probe” the new geometry experimentally so as to avoid making it ad hoc. That
means that the new geometry, in the QM approximation (provided such an ap-
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proximation exists) must be “encoded” in the state functions or density matrices of
systems of particles in Ω.

For simplicity, assume that the system consists of a single particle in a pure
state. In the QM formalism both localized and non-localized states of the particle
are elements of a Hilbert space of states H. What distinguishes the localized states
is that they determine the region, (ideally, the point) of localization. Such a region
is the support of the state function. On the other hand, if the position of a particle
at a moment of time is known, the state function of the particle at this moment is
assumed in QM to be the Dirac delta-function.

It follows that the points of space are in one-to-one correspondence with the
states of a particle localized at these points. It seems therefore reasonable to identify
the classical space, i.e. a space-like hypersurface in spacetime, with the subset
M3 ⊂ H consisting of all point-supported state functions in H. For an appropriately
chosen space H such a subset will be shown to be a Riemannian submanifold of
dimension three with the metric induced by inclusion. As a superposition of delta-
functions cannot be in general reduced to a delta-function, the submanifold M3

is not a linear subspace of H. The latter fact may be considered as a trait of
classicality of M3. It will be shown that M3 may still possess a linear structure,
however incompatible with the one on H.

Of course the embedding, and even the assumed here isometric embedding of a
finite dimensional Riemannian manifold into a Hilbert space is always possible and
may seem rather trivial and artificial. There is, however, an important circumstance
which supports the proposed embedding. Namely, the macroscopic particles (i.e.
those having a sufficiently large mass) in the universe are found in spatially well
localized space wave packets. Simultaneously, sufficiently small in size and mass
macroscopic particles are the ones that can be used as test-particles to “probe”
the Riemannian manifold structure of the classical spacetime. It follows that the
proposed embedding appears naturally in the universe. It is then plausible that
within the formalism of QM the origin of the classical space can be traced back to
the Hilbert space of states of a macroscopic test-particle. The latter is understood
as a material point of a large enough mass to behave classically but small enough to
affect the Riemannian structure of spacetime. In the following such a particle will
be simply called a test-particle.

Although the actual mechanism of localization will not be important in the
following, let us briefly review the most typical scenario of spatial localization of
a test-particle. A test-particle in the universe is subject to constant scattering
processes. A scattering process depends on position of the particle. That is, the
scattered photons and other particles (i.e. the environment) “measure” position
of the test-particle. Assume that prior to a scattering event the test-particle is in
the state ϕi corresponding to the particle being at a particular location ai. Then
the state of the composite particle-environment system after the interaction can be
described by the direct product ϕiΦi, where Φi is the (unitary evolved) state of the
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environment which contains now information about location of the test-particle. If
instead, prior to measurement the test-particle is in a superposition c1ϕ1 + c2ϕ2 of
states of the particle being “here and there”, the linearity of QM ensures that the
composite system after the interaction will be in the state Ψ = c1ϕ1Φ1 +c2ϕ2Φ2. As
a result, the states of the particle and the environment become essentially correlated
or entangled.

However, when the number of degrees of freedom associated with the environ-
ment is large, the states Φi for different values of i turn out to be orthogonal. In
fact, in this case the inner product of Φi’s is the product of a large number of fac-
tors in general of magnitude less then one and is therefore exponentially small. As a
result, interference effects between the states ϕ1, ϕ2 vanish. The resulting physical
process of transition of a pure state c1ϕ1 + c2ϕ2 into the mixture of states ϕ1, ϕ2

with probabilities |c1|
2, |c2|

2 respectively is called decoherence.
The mixture of states ϕ1, ϕ2 is not, however, what is observed when position

of a test-particle in QM is measured. Instead, we observe only one of the pure
states in the mixture. The selection of a particular term out of the mixture remains,
therefore, unexplained (see in particular Ref.[4]). The process of such a selection
is called collapse and it is currently a subject under intensive investigation. In
particular, various stochastic extensions of the Schrödinger dynamics leading to
decoherence and collapse have been proposed (see in particular Refs.[5],[6]).

Whatever the actual mechanism of decoherence and collapse of a state of macro-
scopic test-particle in the universe may be, it must ensure the observed spatial
localization of the particle. This leads us back to the conclusion that the classical
space can be identified with the set of point-supported state functions of the test-
particle. The space M3 therefore appears as a “decohered and collapsed” version of
the Hilbert space H of states of the particle.

Besides being physically motivated, the isometric embedding of M3 into H turns
out to be special in a mathematical sense. In fact, we will see that such an embed-
ding allows one to derive the standard local coordinate formalism of differential
geometry on Riemannian manifolds from the functional coordinate formalism on
Hilbert manifolds introduced in Ref.[7] (see also section 2 of this paper). It will
follow that the proposed embedding is by no means arbitrary or trivial.

Even though the localized states can be identified with the points of classical
space in the described natural way, one can argue that the resulting embedding of
the space M3 into a Hilbert space of states H achieves nothing. In fact, instead
of the advance toward understanding of emergence of space and time, we consider
functions on the space to begin with.

This objection, however, is unwarranted: The identification of points with the
states makes the assumption that the state functions are defined on the classical
space superfluous. In fact, the space M3 does not appear as a set on which the
functions are defined. Instead, M3 itself is a set of functions in H selected in a
particular way. In other words, the spaceM3 is “made of” functions and not of points



On the problem of emergence of classical spacetime 5

in the domain of the functions. In particular, the elements in H may be assumed
to be functions of abstract parameters, where parameters have nothing to do with
the points in the classical space. Instead, they only serve to identify functions as
particular elements of the Hilbert space H. The space of parameters in the paper
will be either three or four dimensional Euclidean space E. The secondary role
of parameters is reflected in the fact that topologically and/or metrically different
spaces M3 can be obtained by considering various Hilbert spaces H of functions
defined on the same set E. The reason for that is simple: the topology and the
metric on M3 depend only on the embedding of M3 into H and have nothing to do
with the actual nature of the elements of H. The reader is referred to section 4 for
a thorough examination of this fact.

We conclude that the proposed scenario leads one to a model of emergence of the
classical space. Namely, it is hypothesized that an abstract Hilbert space S is a new
physical arena which replaces the classical space. The emergence of the latter in the
model is associated with a physical process of “localization” by self-interaction of
the universe. Such a process must be independent of the classical space dynamical
process on S.

Creating a model according to the provided scenario is a very ambitious task
which cannot be undertaken in the paper. The goal that we have in mind here is
much more modest and consists in finding the mathematical formalism appropriate
for the model. In particular, we leave out the details of dynamics leading to emer-
gence of the classical space and to its embedding into a Hilbert space. Instead, we
concentrate on the properties of embedding itself and on the affect of embedding on
dynamics of macroscopic and microscopic particles.

Here is a plan of the paper. In the next section we develop a mathematical
formalism (the “embedding formalism”) that reveals a simple and useful relationship
between the finite and the infinite-dimensional manifolds. The formalism is a natural
application of the coordinate formalism on Hilbert manifolds developed earlier in
Ref.[7]. To keep the exposition self-contained the results of Ref.[7] used in the paper
are briefly reviewed.

In section 3 the geometry of embedding is used to derive the equation of geodesics
for macroscopic particles and the Schödinger equation for microscopic particles.
Both equations are derived by variation of a length-type functional on paths in an
appropriate Hilbert space. This result indicates that the formalism may be rich
enough to describe the macro- and the micro-reality in a uniform fashion.

The results are summarized, extended and further clarified in the last part of
the paper. Here we explain in detail why does it become unnecessary in the model
to presuppose the existence of the classical space. It is shown that, on the contrary,
various topologically different classical spaces can be derived by a “coordinate trans-
formation” on the abstract Hilbert space. The main results of the paper are further
analyzed in this section and the steps needed to make the model realistic are dis-
cussed.
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Let us remark that the provided “emergence scenario” is based on the formalism
of QM. Therefore, the approach is non-relativistic in nature. In particular, time
plays a distinguished role in the discussion. As a result, the model under investiga-
tion is a model of emergence of the classical space rather than of space and time.
The formalism itself can be easily extended to describe the embedding of space-
time into a Hilbert space. We will use this fact in the paper to obtain a formally
relativistic embedding. However, the Hilbert space in this case will be a space of
functions of four variables. Respectively, the meaning of the formalism warrants
further investigation.

Let us also remark that the Hilbert space under consideration is the space of
possible states of a single test-particle. This will be sufficient to clarify the formalism.
Moreover, the developed formalism could be generalized to include Hilbert spaces
of states of more complicated quantum systems, for example, of a system of non-
interacting test-particles. However, such generalizations are not considered in the
paper.

2 The embedding formalism

Let S be the abstract infinite-dimensional separable Hilbert space. Let H be a
specific functional realization of S as a Hilbert space of states of a macroscopic test-
particle in the universe. Ideally such a space H must contain delta-functions. In
fact, as discussed in the previous section, the macroscopic particles in the universe
are found in well localized space wave packets. It is commonly believed that the
delta-like states in QM cannot be elements of a Hilbert space. The existence of
various Hilbert spaces of generalized functions shows that this opinion is wrong.
Consider for example the Sobolev space H ≡ H1(a, b) of functions on the interval
[a, b] ⊂ R, where R is the set of real numbers, with the inner product (ϕ,ψ)H =∫
(dϕ/dxdψ/dx+ϕψ)dx. This is a separable Hilbert space embedded into the space
C[a, b] of continuous functions on [a, b] (by the Sobolev embedding theorem). The
dual Hilbert space H∗ contains then as a subset the space of linear continuous
functionals on C[a, b]. For example, H∗ contains the delta functional which has
therefore a finite norm in H∗. It follows in particular that H is a proper subset
of H∗, where we identify regular functionals with the corresponding functions. At
the same time, by the Riesz theorem, H is isomorphic to H∗ and any functional
f ∈ H∗ can be written in the form f(ψ) = (ϕ,ψ)H for some ϕ ∈ H. In particular,
the delta-functional can be written in such a way for a continuous function ϕ. The
resulting functional is singular not because of the singularity of ϕ, but because the
metric Ĝ : H −→ H∗ on H transforms ϕ into a singular generalized function.

Moreover, the coordinate formalism of Ref.[7] permits one to consider Hilbert
spaces containing singular generalized functions as well as spaces of square-integrable
functions on an equal footing. For this the metric on Hilbert spaces of functions is
made dependent (in a “covariant” fashion) on the variety of functions making up



On the problem of emergence of classical spacetime 7

a particular space. Namely, consider a Hilbert space H of functions finite in the
metric associated with the inner product

(ϕ,ψ)H =

∫
k(x, y)ϕ(x)ψ(y)dxdy. (2.1)

In Eq.(2.1) the kernel k(x, y) is an appropriate function on, say, Rn × Rn and the
integral sign is understood as the action of the corresponding bilinear functional on
H×H (see Ref.[7] for notation). More constructively, H can be obtained by complet-
ing a space of ordinary functions ϕ with respect to the norm ||ϕ||2H = (ϕ,ϕ)H . We
remark here that only those functions k(x, y) for which Eq.(2.1) is a non-degenerate
inner product (i.e. the corresponding completion H is a Hilbert space) are consid-
ered.

By changing the “smoothness” properties of k(x, y) as well as its behavior at
infinity we change the variety of functions in H. If, for example, the kernel k(x, y) is
a smooth function, then the corresponding Hilbert space contains various singular
generalized functions.

In particular, the space H of real valued generalized functions “of” (i.e. defined
on functions of) x ∈ Rn finite in the metric

(ϕ,ψ)H =

∫
e−(x−y)2ϕ(x)ψ(y)dxdy (2.2)

can be shown to be Hilbert (see Ref.[7]). Such a space contains the delta-functions
as, for example, ∫

e−(x−y)2δ(x)δ(y)dxdy = 1. (2.3)

Moreover, H contains the derivatives of any order of the delta-functions as well.
Throughout the rest of this section Hilbert spaces with the metric defined by

a smooth kernel k(x, y) will be generically denoted by H. Given a particular such
realization H of S, consider a submanifold M of H consisting only of delta-functions
(in particular, the superpositions of delta-functions are discarded). The fact that M
is a submanifold of H follows immediately from the easily verified differentiability
of the parametrization map P : Rn −→ H, P (a) = δ(x − a). As follows from the
definition, M is not a linear subspace of H. However, if the parametrization map P
is defined on the entire Rn, it induces a linear structure on M (incompatible with
the one on H).

Let us relate the differential geometry of abstract Hilbert space S and its realiza-
tion H with the usual differential geometry on M . Let eH : H −→ S be a particular
realization of S as a Hilbert space of functions. In other words, eH is a functional
basis on S (see Ref.[7]). Pick a point Φ0 ∈ S and let Φt : R −→ S be a differentiable
path in S which passes through the point Φ0 at t = 0.

The vector X tangent to the path Φt at the point Φ0 is defined as the velocity
vector of the path:

X =
dΦt

dt

∣∣∣∣
t=0

. (2.4)
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Given vector X tangent to Φt at the point Φ0 and a differentiable functional
F on a neighborhood of Φ0 in S, the directional derivative of F at Φ0 along X is
defined by

XF =
dF (Φt)

dt

∣∣∣∣
t=0

. (2.5)

By applying the chain rule we have:

XF = F ′(Φ)
∣∣
Φ=Φ0

Φ′
t

∣∣
t=0 , (2.6)

where F ′(Φ)|Φ=Φ0
: S −→ R is the derivative functional at Φ = Φ0.

The last expression can be also written in the coordinate form. Namely,

XF =

∫
δf(ϕ)

δϕ(x)

∣∣∣∣
ϕ=ϕ0

ξ(x)dx, (2.7)

where ϕt = e−1
H (Φt), ξ = ϕ′

t|t=0 and the linear functional δf(ϕ)
δϕ(x)

∣∣∣
ϕ=ϕ0

, which is an

element of the dual space H∗, can be thought of as the derivative functional F ′(Φ0)
in the dual basis e∗H (see Ref.[7]). As before, the integral sign is understood here in

the sense of action of δf(ϕ)
δϕ(x) on ξ. In this notation we can also write

X =

∫
ξ(x)

δ

δϕ(x)
dx, (2.8)

where ξ ∈ H and the right hand side acts on functionals f defined by

f(ϕ) = F (Φ), (2.9)

where F is as before and eHϕ = Φ. In particular, we see that in this notation tan-
gent vectors are represented symbolically as “linear combinations” of the “partial”
derivatives. Let us remark, however, that one must be careful in using this symbolic
expression as on the infinite-dimensional manifolds a vector field cannot be identi-
fied with a derivation (i.e. an R-linear map defined on functions on a manifold and
satisfying the product rule).

Recall that M denotes the submanifold of H consisting of all delta-functions
(without linear combinations). Let us see how the tangent bundle structure and
the Riemannian structure on M are induced by the embedding i : M −→ H. For
this, let us select from all paths in H the paths taking values in M . Any such path
ϕt : R −→M can be defined by

ϕt(x) = δ(x− a(t)) (2.10)

for some function a(t) which takes values in Rn.
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It is easy to see that vectors tangent to such paths can be identified with the
ordinary 4-vectors. In fact, assume f is an analytic functional on H, i.e. on a neigh-
borhood ‖ϕ− ϕ0‖H < ǫ of ϕ0 the functional f can be represented by a uniformly
convergent in a ball ‖ϕ− ϕ0‖H ≤ δ < ǫ series

f(ϕ) = f0 +

∫
f1(x)ϕ(x)dx+

∫ ∫
f2(x, y)ϕ(x)ϕ(y)dxdy + ... . (2.11)

Then
df(ϕt)

dt

∣∣∣∣
t=0

=
∂f(x)

∂xµ

∣∣∣∣
x=a(0)

daµ

dt

∣∣∣∣
t=0

, (2.12)

where f(x) is defined by the uniformly convergent in a ball ‖a− a0‖Rn ≤ δ1 in Rn

series
f(x) = f0 + f1(x) + f2(x, x) + ... . (2.13)

In particular, the expression on the right of Eq.(2.12) can be immediately identified
with the action of a n-vector daµ

dt
∂

∂xµ on the function f(x).
As before, let H be a real Hilbert space with the metric K : H ×H −→ R given

by a smooth kernel k(x, y). The norm of a vector δϕ ∈ H can be written as

‖δϕ‖2
H =

∫
k(x, y)δϕ(x)δϕ(y)dxdy. (2.14)

If ϕt(x) is a path with values in M , then dϕt(x)
dt

∣∣∣
t=0

= −∇µδ(x− a) daµ

dt

∣∣∣
t=0

, where

a = a(0), ∇µ = ∂
∂xµ and derivatives are understood in a generalized sense. Therefore,

for δϕ(x) = dϕt(x)
dt

∣∣∣
t=0

we have:

‖δϕ‖2
H =

∫
k(x, y)∇µδ(x− a)

daµ

dt

∣∣∣∣
t=0

∇νδ(y − a)
daν

dt

∣∣∣∣
t=0

dxdy. (2.15)

“Integration by parts” in the last expression gives

∫
k(x, y)δϕ(x)δϕ(y)dxdy =

∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a

daµ

dt

∣∣∣∣
t=0

daν

dt

∣∣∣∣
t=0

. (2.16)

By defining daµ

dt
|t=0 = dxµ, we have

∫
k(x, y)δϕ(x)δϕ(y)dxdy = gµν(a)dx

µdxν , (2.17)

where

gµν(a) =
∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a

. (2.18)

As the functional K is symmetric, the tensor gµν(a) can be assumed symmetric

as well. If in addition ∂2k(x,y)
∂xµ∂yν

∣∣∣
x=y=a

is positive definite at every a, the tensor gµν(a)

can be identified with the Riemannian metric on M .
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In particular, consider the Hilbert space H with the metric given by the kernel
k(x, y) = e−

1

2
(x−y)2 . Using Eq.(2.18) and assuming (x− y)2 = δµν(x− y)µ(x− y)ν ,

we immediately conclude that gµν(a) = δµν .
If instead (x − y)2 is used for ηµν(x − y)µ(x − y)ν , where ηµν is the Minkowski

metric on Rn, we obtain gµν(a) = ηµν . In particular both, the Euclidean and the
Minkowski metrics on M can be obtained from a metric on H. Notice that the
kernel e−

1

2
ηµν(x−y)µ(x−y)ν

does not define a positive-definite bilinear functional on
H ×H. However, the functional is non-degenerate.

These examples show that the Euclidean and Minkowski spaces can be obtained
as submanifoldsM consisting of delta-functions in a Hilbert spaceH. It is important
to know, however, whether an arbitrary Riemannian metric gµν(a) can be obtained
in such a way. That is, given a manifold N with a Riemannian metric g does there
exist a Hilbert space H, such that the submanifold M consisting of delta-functions
in H with the induced metric is, at least locally, isometric to N?

Clearly, for a function k(x) with x ∈ Rn the tensor field ∂2k(x)
∂xµ∂xν is rather special

and cannot be made equal to an arbitrary Riemannian metric on Rn. However, we
have twice as many variables at our disposal. To analyze the situation assume for a
moment that the space H is a complex Hilbert space of (generalized) functions “on”
Cn. The variables x, y in Eq.(2.14) are then replaced with the complex conjugate
variables z, z. The Hilbert metric on H is necessary Hermitian. This can be assured,
in particular, by choosing a real-valued kernel k(z, z). In this case the form gµν =
∂2k(z,z)
∂zµ∂zν is automatically Hermitian as well. If, in addition, gµν is positive definite, the
Riemannian metric gµν is known to be Kähler. Moreover, an arbitrary Kähler metric
on C4 can be written locally in such a way (see for example Ref.[2]). Therefore, for
Kähler manifolds the answer to the above question is positive, provided the Kähler
potential k(z, z) defines a Hilbert metric.

A similar result holds true for an arbitrary real analytic Riemannian manifold. In
fact, in Ref.[8] it was verified that any real analytic Riemannian n-dimensional mani-
fold can be real analytically and isometrically embedded into a Kähler n-dimensional
manifold. Then the previous consideration can be applied. Moreover, this result
demonstrates that the complex Hilbert space structure on H naturally leads one to
a Kähler structure on the complex extension of spacetime. The results of Ref.[8]
allow one to make similar statements in case of pseudo-Riemannian manifolds.

Let us review what makes the embedding i : M −→ H special. Since i(M)
consists of functions concentrated at a point (delta-functions), vectors tangent to
i(M) are also given by functions concentrated at a point (directional derivatives
of delta-functions). Consequently, under the embedding the variational derivatives
associated with vectors tangent to S according to Eq.(2.7), naturally reduce to the
partial derivatives that can be identified with vectors tangent to M . Respectively,
the induced Riemannian metric on M is related to the kernel k(x, y) of the Hilbert
metric on H by means of a local transformation (differentiation). As a result, the
standard local coordinate formalism onM appears as a special case of the coordinate
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formalism on infinite-dimensional manifolds presented in Ref.[7]. Moreover, the
obtained results indicate how a finite dimensional Riemannian manifold N can be
isometrically embedded into a Hilbert space H as a submanifold consisting of delta-
functions. Such an embedding allows one to consider the finite and the infinite-
dimensional manifolds within the same local coordinate formalism. This gives us a
reason to call the embedding i : M −→ H natural.

Let us now turn to some applications of the embedding formalism.

3 Variational problems for “macro” and “micro” parti-

cles

In the last section we saw how the formalism of finite dimensional Riemannian
geometry in local coordinates is naturally derived from the coordinate formalism
on Hilbert manifolds developed in Ref.[7]. As a first application of the embedding
formalism we will obtain the equation of geodesics on M by variation of a functional
on paths in S. This is particularly interesting as it demonstrates how the exceptional
properties of the embedding i : M −→ H allows one to deduce the equation of
geodesics on M by “localizing” to M the equation of geodesics on S.

Example. Assume that S is a complex Hilbert space and let eH : H −→ S

be a functional basis on S, i.e. any realization of S as a space of complex-valued
functions on Cn. The inner product on S can be expressed in terms of the inner
product on H and will be written in one of the following ways:

(ϕ,ψ)H =

∫
k(z, z)ϕ(z)ψ(z)dzdz = kzzϕ

zψz. (3.1)

As always, the integral is understood as the action of the Hermitian form K given
by the kernel k(z, z) and the expression on the right is a convenient form of writing
this action.

Consider a path on S which in the basis eH is given by a map ϕ : t −→ ϕt(z) ≡
ϕz

t , where t takes values in some interval [a, b] of real numbers. Let us define the
square-length (or energy) action functional on paths by

l(ϕ) =

∫ b

a
dtkzz

dϕz
t

dt

dϕz
t

dt
. (3.2)

The corresponding Lagrangian L depends only on dϕ
dt

≡ ϕ̇ and dϕ
dt

≡ ϕ̇, i.e. L =
L(ϕ̇, ϕ̇). For variation of l(ϕ) we then have:

δl(ϕ) =

∫ b

a
dtkzz

(
ϕ̈z

t δϕ
z
t + ϕ̈z

t δϕ
z
t

)
. (3.3)

Therefore, the pair of complex conjugate equations of motion is

kzzϕ̈z
t = 0, kzzϕ̈z

t = 0. (3.4)
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Since the Hilbert metric is non-degenerate, it follows that ϕ̈z
t = 0, i.e. ϕt is a

linear function of the parameter t. This is consistent with the fact that the shortest
line in a Hilbert space is a straight line.

Assume that the kernel k(z, z) is a smooth function. The resulting complex
Hilbert space H contains then singular generalized functions, in particular, delta-
functions. Analogously to the previous section, let us form a complex n-dimensional
submanifold M c of H consisting of all delta-functions in H. An arbitrary path in
M c is given by

ϕt(z) = δ(z − a(t)), ϕt(z) = δ(z − a(t)). (3.5)

Variation of l with constraints Eq.(3.5) yields

∫
k(z, z)

d2

dt2
δ(z − a(t))δϕt(z)dzdz = 0 (3.6)

as well as the complex conjugate equation. Here the variation δϕt(z) must respect
Eq.(3.5). Notice that in a generalized sense

d2

dt2
δ(z − a(t)) =

∂2

∂zν∂zµ
δ(z − a(t))

daν

dt

daµ

dt
−

∂

∂zµ
δ(z − a(t))

d2aµ

dt2
. (3.7)

“Integration by parts” in Eq.(3.6) gives then

∫ (
∂2k(z, z)

∂zν∂zµ

daν

dt

daµ

dt
+
∂k(z, z)

∂zµ

d2aµ

dt2

)

δ(z − a(t))δϕt(z)dzdz = 0. (3.8)

Notice also that

δϕt(z) = −
∂

∂zα
δ(z − a(t))δaα(t), (3.9)

where zα ≡ zα and similarly aα ≡ aα. Let us now integrate by parts with respect
to zα and change the order of partial derivatives. This yields

∫ (
∂

∂zµ

∂2k(z, z)

∂zν∂zα

daν

dt

daµ

dt
+
∂2k(z, z)

∂zµ∂zα

d2aµ

dt2

)

δ(z − a(t))δ(z − a)dzdz = 0, (3.10)

and the complex conjugate equation. Using the notation

gµα(a) =
∂2k(z, z)

∂zµ∂zα

∣∣∣∣∣
z=a,z=a

, (3.11)

we have

gµα
d2aµ

dt2
+
∂gνα

∂zµ

daν

dt

daµ

dt
= 0. (3.12)

Assume now that the matrix (gµα) is non-degenerate. Then, multiplying Eq.(3.12)
by the inverse matrix (gαβ), we obtain

d2aβ

dt2
+ gαβ ∂gνα

∂zµ

daν

dt

daµ

dt
= 0. (3.13)
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In a similar way the equation complex conjugate to Eq.(3.6) gives the complex
conjugate of Eq.(3.13).

Now, as discussed at the end of section 2, any Kähler metric can be locally
written in the form Eq.(3.11). Moreover, the symbols

Γβ
νµ = gαβ ∂gνα

∂zµ
(3.14)

are the connection coefficients for the Kähler metric Eq.(3.11) (see for example
Ref.[2]). That is, the equation Eq.(3.13) and the complex conjugate equation are
equations of geodesics on the Kähler manifold M c.

Also, any real analytic Riemannian n-dimensional manifold M can be isometri-
cally embedded into a Kähler manifold M c of complex dimension n. Moreover, one
can always assure M to be a totally geodesic submanifold of M c (see Ref.[8]). This
means that every geodesic on M is also a geodesic on M c. In particular, geodesics
of M , when considered as paths in M c satisfy Eq.(3.13).

This demonstrates that the extremals of the functional l(ϕ) in Eq.(3.2) subject
to the constraint ϕt(x) = δ(x − a(t)) yield geodesics on M . Assume in particular
that H is a Hilbert space of functions of four abstract variables and, as before, M
is a submanifold made of delta-functions in H. Assume further that the induced
metric on M is pseudo-Riemannian and M is identified with the spacetime. Notice
that this requires the metric on H to be an indefinite Hilbert metric. Then the
obtained result means that the dynamics of test-particles in a field of gravity can
be deduced by variation of the square-length functional on paths in H. In addition,
as explained in detail in section 4, this derivation does not presuppose the existence
of the classical space. Notice however, that in this case the elements of H, being
functions of four variables, cannot be directly interpreted as quantum states. As
already mentioned in the introduction, this fact warrants further investigation.

In the next example we consider the microscopic particles instead.
Example. Assume that a microscopic particle is in a stationary state so that

ϕt(x) = e−iωtψ(x), (3.15)

where x in Eq.(3.15) refers to coordinates in space and t is time. Respectively, let
H be a realization of S as a space of complex-valued functions ψ of three abstract
variables for which we still use the notation x. As we explain in section 4, neither
the derivation nor its interpretation require functions ψ to be defined on the classical
space.

For any ψ ∈ H the function ϕt : R −→ H defined by Eq.(3.15) is a path with
values in H. As the variables x are real, the functional Eq.(3.2) reads

l(ϕ) =

∫ b

a
dtk(x, y)

dϕt(x)

dt

dϕt(y)

dt
dxdy. (3.16)



On the problem of emergence of classical spacetime 14

With the help of Eq.(3.15), we have:

l(ϕ) =

∫ b

a
dtk(x, y)ω2ψ(x)ψ(y)dxdy. (3.17)

Let us impose the normalization condition

∫
ψ(x)ψ(x)dx = 1. (3.18)

The Euler-Lagrange equations for the functional Eq.(3.17) subject to the constraint
Eq.(3.18) read ∫

k(x, y)ψ(y)dy − λψ(x) = 0 (3.19)

and the complex conjugate equation.
Notice that the energy eigenstates are normally sufficiently smooth functions.

This in particular means that the kernel k(x, y) can be chosen to be a singular gen-
eralized function. In this respect the situation is directly opposed to the considered
case of macroscopic test-particles. In the latter case the state functions are singular
and therefore the metric k(x, y) must be a reasonably “good” function.

Assume then that the kernel k(x, y) in Eq.(3.19) is given by

k(x, y) = −∆xδ(x− y) + V (x)δ(x− y), (3.20)

where ∆x is the Laplacian and V is a given potential. In particular, the kernel
Eq.(3.20) depends on the potential.

Notice that after integration by parts the metric defined by this kernel can be
written in the following way:

∫
k(x, y)ψ(x)ψ(y)dxdy =

∫
|∇ψ(x)|2 dx+

∫
V (x) |ψ(x)|2 dx. (3.21)

Therefore, the Hilbert space with such an inner product is the (weighted) Sobolev
space H1(R3).

The equation Eq.(3.19) with the metric Eq.(3.20) reads

∫
(−∆xδ(x− y) + (V (x) − λ) δ(x− y))ψ(y)dy = 0. (3.22)

“Integration by parts” applied twice gives

(−∆x + V (x))ψ(x) = λψ(x), (3.23)

i.e. the ordinary Schrödinger equation. As already mentioned, the physical inter-
pretation of Eq.(3.23) with x as an abstract variable will be given in section 4.

Let us remark that no independent reason for the choice Eq.(3.20) of the metric
was given. Therefore, the example only demonstrates the possibility of deducing
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the Schrödinger equation by variation of the functional l(ϕ) under an appropriate
choice of the metric.

Also, the normalization condition Eq.(3.18) seems to contradict the choice of the
metric Eq.(3.20). It is important to realize, however, that the metric Eq.(3.20) is
a Riemannian metric on L2(R

3). Such a metric is a bilinear functional on tangent

spaces H = TϕL2(R
3) to which dϕ(x,t)

dt
belongs for each t and it should not be

confused with the metric on L2(R
3) itself.

The examples demonstrate that, depending on the metric and the form of a state,
the Euler-Lagrange equations for the functional l(ϕ) yield both the classical motion
of macroscopic particles along geodesics and the quantum mechanical behavior of
microscopic particles according to the Schrödinger equation.

4 The emergence of spacetime: Discussion

Let us review the advocated scenario of emergence of the classical spacetime. We
began with the observation that the Riemannian manifold structure of the classical
(in general, curved) 3-space can be naturally recovered from the Hilbert space H of
states of a macroscopic test-particle in the universe. In fact, the position of such a
particle at any given moment of time is fixed. Therefore, H must contain spatially
point-supported state functions, i.e. delta-functions δp(x) on the classical space. In
the proposed formalism delta-functions and other generalized functions are on equal
footing with the square-integrable functions. In particular, any such function in the
formalism is an element of a Hilbert space. The correspondence p −→ δp(x) is one-
to-one and allows us to identify the classical space with the submanifold M3 ⊂ H
of all delta-functions in H. This identification is physically natural as the classical
space is seen as such only when localized test-particles are used to observe it.

The above construction can be now reversed so that it becomes unnecessary to
presuppose the existence of the classical space. The key observation is that the
submanifold M3 of H identified with the classical space is a set of functions rather
than a set of points on which these functions are defined. In particular, the domain
D of functions becomes irrelevant in defining the Riemannian manifold structure of
M3. Instead, such structure is defined by the embedding of M3 into the abstract
Hilbert space S.

The embedding considered in the paper consists of a Hilbert realization eH :
H −→ S of S and of the identification map of M3 with the submanifold of all delta-
functions in H. Assume that the space H consists of generalized functions “of”
three (or four) abstract variables, so that the domain D of the functions is, say, a
ball in the Euclidean space R3 (or R4). Let us show that the developed formalism
does not rely on the pre-existing classical space. We will prove that on the contrary:

(1) Various induced Riemannian metric on the “emerging” classical space M3

can be derived by an appropriate choice of the space H of functions on D,
(2) The choice of H yields various topologically non-trivial spaces M3, despite
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the fact that the domain D of definition of functions in H is topologically trivial,
and

(3) Both the Schrödinger equation for microscopic particles and the equation of
geodesics for macroscopic test-particles can be derived without any appeal to the
classical spacetime.

To prove (1) assume that the metric on H is defined by a kernel k(x, y). By

Eq.(2.18), the induced Riemannian metric on subspaceM3 is given by gαβ = ∂2k(x,y)
∂xα∂yβ .

Moreover, we verified in section 2 that any analytic Riemannian metric can be locally
written is such a way provided k(x, y) is appropriately chosen. It follows in particular
that the metric on M3 has nothing to do with the Euclidean metric on the domain
D ⊂ R3.

To prove (2) consider the following one-dimensional example. Let H be a Hilbert
space of smooth functions ϕ on the interval [0, 2π] such that

ϕ(n)(0) = ϕ(n)(2π) (4.1)

for any ϕ in H and any order n of the derivative of ϕ. The derivatives in Eq.(4.1)
are the usual one-sided derivatives. Consider the dual space H∗ of functionals on H.
Assume that the kernel of the metric on H∗ is smooth and let us identify M with the
submanifold in H∗ consisting of the delta-functions. The space of parameters here is
the interval [0, 2π] which has a trivial topology. The condition Eq.(4.1) can be used
to identify H with the space of smooth functions on the circle S1. Respectively, H∗

is the space of generalized functions “on” S1. Let a be the angular parameter on
S1. Then the map a −→ δ(θ− a) from S1 into H∗ is a parametrization of M which
identifies M with the circle.

Notice once again that the non-trivial topology on M was obtained here by
means of a condition Eq.(4.1) imposed on functions and despite the topological
triviality of the space of parameters D. If no condition like Eq.(4.1) is imposed, the
submanifold M becomes topologically trivial.

One can check in a similar way that topology of the submanifold M3 ⊂ H is not
in general determined by the topology of the domain D of definition of functions in
H. Instead, analogously to the Riemannian structure, the topology depends only
on the way in which we identify M3 as a submanifold of S.

To verify (3) assume that a particular realization eH : H −→ S is fixed and
M3 is identified with the submanifold of delta-functions in H. Let us construct a
Riemannian 3-manifold N of points rather than functions (i.e. the one which is not
a subset of H), which is isometric to M3 and can be therefore identified with it. For
this let us point out that the inverse of the parametrization map P : a −→ δ(x− a)
identifies “pieces” of the manifold M3 with the corresponding pieces of the space of
parameters R3 and induces the Riemannian manifold structure on the collection of
the latter pieces. Notice that the space of parameters becomes then a model space

for N but should not be confused with N itself. The derived manifold N ∼= M3 as
well as its “parent” M3 is now identified with the classical space. The parameters aµ
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become coordinates on the space, vectors tangent to M3 become identified with the
ordinary vectors and the induced metric becomes an (arbitrary) Riemannian metric
on the classical space N (see section 2).

The way in which the manifold N has appeared is essential for understanding of
why the results of section 3 do not rely on a pre-existing classical space. In particular,
in formula Eq.(3.16) there is no need to assume that the variables x, y represent
coordinates on the classical space. Under the given assumptions the Schrödinger
equation Eq.(3.23) follows even if x is an unrelated to the classical space abstract
variable with values in R3. Of course, to extract a physical content from the obtained
Schrödinger equation, one needs to be able to physically identify x. To measure x,
a macroscopic measuring device, say, a macroscopic test-particle, must be used.
The set of observed states of such a particle form the space M3 of delta-functions
parametrized by the abstract parameter a. As we just discussed, the parametrization
map a −→ δ(x − a) induces the structure of a manifold N isometric to M3. It
becomes, therefore, possible to interpret a as coordinates on the classical space N .
Respectively, assuming the abstract variable x in Eq.(3.23) stands for a, the standard
interpretation of the Schrödinger equation follows. This, by the way, suggests that
notation a rather than x should be used in Eq.(3.23) when ψ is considered to be a
function on N .

Let us add a few comments to the above demonstration.
(I) The result (2) has an important implication: it shows that a change of

the functional basis eH on S may result in a change of topology/metric on the
submanifold M3. In fact, we saw that depending on the realizationH the embedding
of M3 into H produces spaces of different Riemannian metric and topology. At the
same time, all such infinite-dimensional separable Hilbert realizations H are known
to be isomorphic. In particular, a change of realization is just a change of the
functional basis eH . In other words, what looks like a “coordinate transformation”
on S (see Ref.[7]), can be observed as a change of topology on M .

(II) In (3), having introduced the manifold N , one can, if desirable, consider
the set of delta-functions δp(x) on N . Clearly, there is a one-to-one correspondence
between this set and M3. Notice that the functions δp(x) have a different domain
than delta-functions in H and should not be confused with the latter. Such a
confusion would lead one to the idea that the classical space like N is still needed
to define M3.

(III) Let us also clarify the notion of an ǫ-neighborhood of a point on the space
M3. Such a notion is important in particular in defining what is local on M3 without
needing to refer to locality on spaces N or D. As M3 is a Riemannian manifold,
the ǫ-neighborhood of a point δ(x − a) ∈ M3 is naturally defined in terms of the
Riemannian metric. We say in particular that two points δ(x − a), δ(x − b) in M3

are ǫ-close if the distance between the points is less than ǫ. As the Riemannian
metric on M3 is induced by the embedding of M3 into H, this also means that
||δ(x− b)− δ(x−a)||H < ǫ. For any particular Hilbert space H the latter expression
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can be written in terms of the parameters. In particular, if the metric onH is defined
by the kernel e−

1

2
(x−y)2 , then ||δ(x−b)−δ(x−a)||H < ǫ means that |2−2e−

1

2
(a−b)2 | <

ǫ2 which is equivalent to ||a− b||R3 < ǫ1 for a uniquely defined ǫ1.
The above discussion clarifies how the Riemannian geometry on M3 can be

introduced without any reference to the classical space. At the same time we see
how a particular realization H of S has an “encoded” information about the classical
space. Moreover, we see that the formalism allows one to mathematically derive both
the classical and the quantum concepts (e.g., classical Riemannian space, state-
functions defined on the classical space) from the concept of a Hilbert space of
functions of abstract parameters. This derivation is genuine in the sense that it
does not utilize the notion of a classical space.

We are therefore in the position to drop the assumption of a pre-existing space.
Instead, the abstract infinite-dimensional separable Hilbert space S is taken to be a
model of space adequate to the non-relativistic quantum theory. The classical space
is then mathematically derived from S by the following steps:

(a) Select a realization eH : H −→ S of S as a space of (generalized) functions
“on”, say, R3,

(b) Define the submanifold M3 of delta-functions in H with the induced Rie-
mannian metric and identify it with the classical space.

As we already discussed, the same steps assure mathematical derivation of the
classical spacetime. For this the space H must be a Hilbert space of generalized
functions “of” 4-variables. However, the physical meaning of the elements of H in
this case needs to be investigated.

Now that the mathematical derivation of the classical spacetime has been ana-
lyzed, let us turn to the physical aspects of the advocated model of emergence. The
potentially useful in physics results obtained in the paper are as follows:

(A) Derivation of the Riemannian metric on the classical space from the metric
on a Hilbert space of states,

(B) Derivation of the equation of geodesics on spacetime from the variational
principle for the “square-length” functional restricted to paths on M ⊂ H, where
M is the submanifold of delta-functions in H,

(C) Derivation of the Schrödinger equation by variation of the same functional
restricted to the “stationary” paths taking values on the unit sphere in L2(R

3), and
with tangent vectors in the weighted Sobolev space H1(R3).

Each of these results poses several important questions that require further
analysis. In particular, (A) relates the Riemannian metric on classical space with
the Hilbert metric on a space of states. This relationship implies that different Rie-
mannian metrics require different Hilbert spaces of states. How one would account
then for the standard results in QM where the Hilbert space of states is always a
space of square-integrable (with respect to some measure) functions?

To answer, recall that the Hilbert space with metric given by the kernel g(x, y) =

e−
1

2
(x−y)2 , where (x − y)2 = δµν(x − y)µ(x − y)ν , yields the standard Euclidean
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metric on the 3-space R3 (see section 2). If one begins instead with the kernel
gL(x, y) = L√

π
e−L2(x−y)2 , the induced metric differs from the Euclidean by a constant

factor. In particular, it is conformally equivalent to the Euclidean metric. On the
other hand, the sequence L√

π
e−L2(x−y)2 is a delta-convergent sequence as L −→ ∞.

Let HL be the Hilbert space with the metric given by the kernel gL. Notice that for
any L such a space contains δ-functions. At the same time, for a large enough L
the L2-norm and the HL-norm of a square-integrable function on R3 are practically
indistinguishable. This can be used in conformally invariant theories to relate the
metrics in the described way and, at the same time, to account for the standard
predictions of QM.

There is, however, a more radical possibility. It is conceivable that the Rie-
mannian metric on S is a tensor field, i.e. it changes as we move across S. In
this case the metric in experiments producing improper and bound states could be
different (see Ref.[9]).

As already discussed, the problem with derivation (B) is in the physical inter-
pretation of functions of four variables needed to derive the equation of geodesics in
spacetime (rather than just in classical space).

The derivation (C) is based on the following three assumptions:
(α) The Hilbert space S is realized as the space L2(R

3) of square-integrable
functions on R3.

(β) The admissible paths have the form ϕt(x) = e−iωtψ(x), where ψ is unit-
normalized. In other words, ψ ∈ SL2 , where SL2 is the unit-sphere in L2(R

3).
(γ) The Hilbert metric on spaces tangent to SL2 is the Sobolev space metric

defined by Eq.(3.21).
We remark here that the non-linearity of SL2 is analogous to the non-linearity of

the space M3 of delta-functions in the Hilbert space of states of a macroscopic test-
particle. The metric induced on M3 was just the ordinary Riemannian metric on
the classical 3-space. Here, for the dynamical equation to be correct, the similarly
induced metric on SL2 must be the Sobolev metric Eq.(3.21). The above “emerging”
relationship between the classical, purely local dynamics of macroscopic particles
and essentially non-local dynamics of microscopic particles warrants a thorough
clarification and investigation.

What should be the next step in building a physically sound theory of emergence
in accordance with the proposed scenario? Assume that indeed the abstract Hilbert
space S or some generalization of it is an appropriate arena for all physical processes.
Our primary goal must be then to derive the classical space and, more generally,
the space and time by means of a physical process of emergence rather than just
by a mathematical transformation. Such a process is likely to be related to the
phenomena of decoherence and collapse that ensure spatial localization of state of
macroscopic particles in the universe as described in introduction. However, for the
emergence process to be truly independent of the emerging classical space, it must
be formulated as a dynamical process on S itself.
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No such dynamical mechanism for the advocated emergence scenario is offered in
the paper. In particular, no dynamical reason for a particular choice of realization
H of S is proposed. The model does indeed provide us with a way of deriving the
Riemannian manifold structure on classical spacetime, but it does so “kinematically”
rather than dynamically. Namely, the classical space (or spacetime) is derived in
the paper through a choice of the functional basis eH rather than as a result of a
dynamical process.

The purpose of the model is to promote the quantum-mechanical Hilbert space
of states to the status of a new, infinite-dimensional arena for modern physics. The
developed formalism shows that the old fashioned classical space (or even spacetime)
can be, in a sense, a “decohered” version of its newer counterpart. It remains to be
seen, however, whether the formalism is adequate for the dynamical treatment of
the problem of emergence and whether the above purpose can be fulfilled.
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