
Linear algebra and differential geometry on abstract

Hilbert space

Alexey A. Kryukov ∗

Isomorphisms of separable Hilbert spaces are analogous to isomorphisms of n-
dimensional vector spaces. However, while n-dimensional spaces in applications are
always realized as the Euclidean space Rn, Hilbert spaces admit various useful re-
alizations as spaces of functions. In the paper this simple observation is used to
construct a fruitful formalism of local coordinates on Hilbert manifolds. Images
of charts on manifolds in the formalism are allowed to belong to arbitrary Hilbert
spaces of functions including spaces of generalized functions. Tensor equations then
describe families of functional equations on various spaces of functions. The formal-
ism itself and its applications in linear algebra, differential equations and differential
geometry are analyzed.

1 Introduction

Various integral transforms are known to be extremely useful in analysis and ap-
plications. One example is the Fourier transform in analysis and applied problems;
another example is the Segal-Bargmann transform [1] in quantum theory. An im-
portant common property of integral transforms is that they relate various spaces
of functions and various operators on these spaces and allow one to “transplant”
a problem from one space to another one. Because of that, the problem at hand
may become easier to solve. A somewhat similar situation arises when working with
tensor equations in the finite dimensional setting. Namely, by an appropriate choice
of coordinates one can significantly simplify a given tensor equation. Although the
analogy is obvious, an infinite-dimensional setting offers a significantly larger variety
of situations. In particular, by using the Segal-Bargmann transform, one can relate
problems on spaces of ordinary or even generalized functions to problems on spaces
of holomorphic functions.

In the paper we attempt to build a systematic approach to functional transfor-
mations on Hilbert spaces based on the above mentioned analogy between integral
transforms and changes of coordinates on an n-dimensional manifold. Initial results
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in this direction were announced in [6] and [7]. Various application of the formalism
to quantum theory especially to the problem of emergence of the classical space-time
were considered in [7], [8] and [9]. The goal here is to approach the subject in a
more formal mathematical way and to justify the previously obtained results. The
reader is referred to [2] for an introduction to Hilbert spaces and applications.

We begin by describing a method of building various Hilbert spaces of functions
including spaces of smooth and generalized functions. Then a simple formalism
based on isomorphisms of these spaces is constructed. The formalism allows one to
“move” in a systematic way between Hilbert spaces of functions and at the same
time to formulate problems in a way independent of any particular functional real-
ization. The formalism is then applied to building linear algebra on Hilbert spaces
which deals with the ordinary and the generalized functions on an equal footing.
After discussing various special transformations preserving properties of differential
operators we concentrate on differential geometry of Hilbert spaces of functions.
Namely, using the developed formalism we find a natural isometric embedding of
finite dimensional Riemannian manifolds into Hilbert spaces of functions. Finally,
the formalism is applied to construct a Riemannian metric on the unit sphere in a
Hilbert space in such a way that solutions of Schrödinger equation are geodesics on
the sphere.

2 Hilbert spaces of C
∞-functions and their duals

Let us discuss first a general method of constructing various Hilbert spaces of smooth
and generalized functions. Consider the convolution

(f ∗ ρ)(x) =

∫
f(y)e−(x−y)2dy (2.1)

of a function f ∈ L2(R) and the Gaussian function ρ(x) = e−x2
. It is the standard

result that such a convolution is in C∞ ∩ L2(R) and

Dp(f ∗ ρ)(x) = (f ∗Dpρ)(x), (2.2)

for any order p of the derivative D.

Theorem 2.1 The linear operator ρ : L2(R) −→ L2(R) defined by

ρf = f ∗ ρ (2.3)

is a bounded invertible operator.

Proof. The operator ρ is bounded because ‖ρ ∗ f‖L2
≤ ‖ρ‖L1

‖f‖L2
. To check that it

is invertible, assume that (ρ ∗ f)(x) = 0 and differentiate both sides of this equation
an arbitrary number of times p. We then conclude that all Fourier coefficients cp of
f in the orthonormal in L2(R) basis of Hermite functions vanish.
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The operator ρ induces the Hilbert metric on the image H = ρ(L2(R)) by

(ϕ,ψ)H = (ρ−1ϕ, ρ−1ψ)L2 . (2.4)

In particular, the space H with this metric is Hilbert.

Theorem 2.2 The embedding H ⊂ L2(R) is continuous and H is dense in L2(R).

Proof. We have

‖ϕ‖L2
= ‖ρf‖L2

≤ ‖ρ‖L1
‖f‖L2

= M ‖ϕ‖H , (2.5)

where M is a constant. In addition, the functions e−(x−a)2 , a ∈ R, being in H, form
a complete system in L2(R). Therefore, H is dense in L2(R).

Provided we identify those linear functionals on H and L2(R) which are equal
on H, we then have

L∗
2(R) ⊂ H∗ (2.6)

Indeed, any functional continuous on L2 will be continuous on H.

Theorem 2.3 When using the standard norm

‖f‖H∗ = sup
‖ϕ‖H≤1

|(f, ϕ)| (2.7)

on H∗ and similarly on L∗
2, we have a continuous embedding L∗

2(R) →֒ H∗.
Proof. Because ‖ϕ‖L2

≤M ‖ϕ‖H , for any f ∈ L∗
2 we have

‖f‖H∗ ≤ N ‖f‖L∗
2
. (2.8)

That is, we have a continuous embedding L∗
2(R) →֒ H∗.

By Riesz’ theorem the norm on H∗ is induced by the inner product

(f, g)H∗ = (ϕ,ψ)H , (2.9)

where f = (ϕ, ·)H = Ĝϕ and g = (ψ, ·)H = Ĝψ and Ĝ : H −→ H∗ is the Riesz’
isomorphism. Similarly for L∗

2.

On the other hand, since ρ : L2 −→ H is an isomorphism of Hilbert spaces, the
adjoint operator ρ∗ : H∗ −→ L∗

2, defined for any f ∈ H∗, ϕ ∈ L2 by

(ρ∗f, ϕ) = (f, ρϕ), (2.10)

is continuous and invertible (with (ρ∗)−1 = (ρ−1)∗).
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Theorem 2.4 The operator ρ∗ is an isomorphism of Hilbert spaces H∗ and L∗
2

with the above inner product (2.9). The metric on H∗ can be defined by the
isomorphism Ĝ−1 : H∗ −→ H, Ĝ−1 = ρρ∗.

Proof. For any f, g ∈ H∗ the inner product (f, g)H∗ induced by ρ∗ is given by

(f, g)H∗ = (ρ∗f, ρ∗g)L∗
2

= (f, ρρ∗g), (2.11)

where ρρ∗ : H∗ −→ H defines the metric on H∗. On the other hand, if f = (ϕ, ·)H

and g = (ψ, ·)H , then f = Ĝϕ, and g = Ĝψ, where Ĝ : H −→ H∗ is the Riesz’
isomorphism. Therefore, metric (2.9) on H∗ can be written as follows:

(f, g)H∗ = (ϕ,ψ)H = (Ĝϕ, ψ) = (ĜĜ−1f, Ĝ−1g) = (f, Ĝ−1g). (2.12)

From (2.4) we conclude that Ĝ−1 = ρρ∗. Also, because the inner products (2.11)
and (2.12) coincide, ρ∗ is an isomorphism of Hilbert spaces H∗ and L∗

2.

Because the kernel of ρ is given by ρ(x, y) = e−(x−y)2 , the kernel k(x, y) of Ĝ−1,
computed up to a constant factor, is equal to

k(x, y) = e−
(x−y)2

2 . (2.13)

Therefore, the inner product on H∗ can be written as

(ϕ,ψ)H∗ =

∫
e−

(x−y)2

2 ϕ(x)ψ(y)dxdy. (2.14)

Note that the integral symbol here denotes the action of the bilinear functional
G−1 on H∗ × H∗. Only in special cases does this action coincides with Lebesgue
integration with respect to x, y.

Theorem 2.5 The space H∗ contains the pointwise evaluation functional (the
delta-function) δa : ϕ −→ ϕ(a).

Proof. The sequence

fL =
L√
π
e−L2x2

(2.15)

is fundamental in H∗ and so it converges in H∗. Also, the sequence fL is a delta-
converging sequence, so that (fL, ϕ) −→ (δa, ϕ) as L −→ ∞ for any ϕ ∈ H. In
particular, fL strongly converges to the evaluation functional δa in H∗.

Formally,

(δa, δb)H∗ =

∫
e−

(x−y)2

2 δ(x− a)δ(y − b)dxdy = e−
(a−b)2

2 . (2.16)

Note that the inner product on L2(R) can be written in the form

(ϕ,ψ)L2 =

∫
δ(x− y)ϕ(x)ψ(y)dxdy, (2.17)



Linear algebra and differential geometry on abstract Hilbert space 5

where
∫
δ(x−y)ψ(y)dy denote the convolution (δ∗ψ)(x) = ψ(x). The main difference

between metrics (2.14) and (2.17) is that the metric on L2(R) is “diagonal”, while
the metric on H∗ is not.

Consider now yet another Hilbert space obtained in a similar fashion. For this
note that since H →֒ L2(R), the Fourier transform σ on H is defined. Moreover, σ
induces a Hilbert metric on the image H̃ = σ(H) by

(σ(ϕ), σ(ψ))
H̃

= (ϕ,ψ)H , (2.18)

for any ϕ,ψ in H.

We can then define the Fourier transform on H∗ in the standard way by

(σ(f), σ(ϕ)) = 2π(f, ϕ), (2.19)

for any f ∈ H∗ and ϕ ∈ H. The image σ(H∗) is the Hilbert space H̃∗ dual to H̃.
The metric on this space is induced by the map σρ : L2 −→ H̃:

(f, g)
H̃∗ = ((σρ)∗f, (σρ)∗g)L∗

2
. (2.20)

In other words, the metric on H̃∗ is given by σρρ∗σ∗ : H̃∗ −→ H̃. The kernel of this
metric is then equal to

k̃(x, y) =
1√
2π
e−

x2

2 δ(x− y), (2.21)

where δ(x−y) is the kernel of the operator δ∗ of convolution with the delta function.

Note that because of the weight e−
x2

2 , the space H̃∗ contains the plane wave functions
eikx.

So, we have the Hilbert space H of C∞ (in fact, analytic) functions, its dual
H∗ containing singular generalized functions, in particular, δ, Dpδ. We also have
the Fourier transformed space H̃ and its dual H̃∗, which contains, in particular, the
plane wave function eipx.

The method used to construct the above spaces of generalized functions is very
general. All we need is a linear injective map ρ on a space L2 of square-integrable
functions. By changing ρ, we change the metric Ĝ on the Hilbert space H =
ρ(L2) and therefore the metric Ĝ−1 on the dual space H∗. Roughly speaking, by
“smoothing” the kernel of the metric Ĝ−1, we extend the class of (generalized)
functions for which the norm defined by this metric is finite. The same is true if
we “improve” the behavior of the metric for large |x|. Conversely, by “spoiling the
metric” we make the corresponding Hilbert space “poor” in terms of a variety of
the elements of the space. This is further illustrated by the following theorem.

Theorem 2.6 If ρ is the map on L2(R) with the kernel ρ(x, y) = e−(x−y)2−x2
, then

the Hilbert space ρ (L2(R)) with the induced metric is continuously embedded into
the Schwartz space W of C∞ rapidly decreasing functions on R.
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Proof. From Theorem 2.1 we immediately conclude that the map ρ is injective and
the image ρ (L2(R)) consists of C∞ functions. Moreover, we have

∣∣∣∣
∫
f(y)e−(x−y)2−x2

dy

∣∣∣∣ ≤M ‖f‖L2
e−x2

, (2.22)

where M is a constant. In particular, the functions in ρ (L2(R)) decrease faster
than any power of 1/|x|.
Now, the topology on W may be defined by the countable system of norms

‖ϕ‖p = sup
x∈R;k,q≤p

∣∣∣xkϕ(q)(x)
∣∣∣ , (2.23)

where k, q, p are nonnegative integers and ϕ(q) is the derivative of ϕ of order q. For
any ϕ ∈ H by the Schwarz inequality we have:

∣∣∣xkϕ(q)(x)
∣∣∣ =

∣∣∣∣
∫
xkf(y)

dq

dxq
e−(x−y)2−x2

dy

∣∣∣∣

≤
(∫

x2kP 2
q (x)e−2(x−y)2−2x2

dy

) 1
2

‖f‖L2
= Mk,q ‖f‖L2

, (2.24)

where ρf = ϕ, Pq is a polynomial of degree q and Mk,q are constants depending
only on k, q. This proves that topology on H is stronger then topology on W , i.e.
H ⊂W is a continuous embedding.

It follows from the theorem that W ∗ ⊂ H∗ as a set. In fact, any functional con-
tinuous on W will be continuous on H. Moreover, by choosing the strong topology
on W ∗ one can show that the embedding of W ∗ into H∗ is continuous. Notice also
that one could choose the weak topology on W ∗ instead as the weak and strong
topologies on W ∗ are equivalent [4].

Remarks 1. The considered Hilbert spaces of generalized functions could have
been also obtained by completing spaces of ordinary functions with respect to the
discussed inner products. More generally, in many cases the expression

(f, g)k =

∫
k(x, y)f(x)g(y)dxdy, (2.25)

where k is a continuous function on a region D in R2n defines an inner product
on L2(R

n). Then the completion with respect to the corresponding metric yields a
Hilbert space containing singular generalized functions.

2. The isomorphism ρ defined on L2(R) by (ρf)(x) =
∫
e−(x−y)2f(y)dy is

closely related to the Segal-Bargmann transform Ct : L2(R
d) −→ H(Cd), where

H(Cd) is the space of holomorphic functions on Cd, given by

(Ctf)(z) =

∫
(2πt)−

d
2 e−

(z−y)2

2t f(y)dy. (2.26)

The theorem by Segal-Bargmann [1] (see also [3]) says the following.
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Theorem 2.7 For each t the map Ct is an isomorphism of L2(R
d) onto

HL2(C
d, νt). Here HL2(C

d, νt) denotes the space of holomorphic functions that
are square-integrable with respect to the measure νt(z)dz, where dz is the
2d-dimensional Lebesgue measure on Cd and the density νt is given by

νt(x+ iy) = (πt)−
d
2 e−

y2

t , x, y ∈ Rd. (2.27)

3. Let us also remark that Hilbert spaces on which the action of pointwise
evaluation functional is continuous are often called reproducing kernel Hilbert spaces.

3 Generalized eigenvalue problem and functional tensor

equations

Consider the generalized eigenvalue problem for a linear operator Â on a Hilbert
space H:

f(Âϕ) = λf(ϕ). (3.1)

The problem consists in finding all functionals f ∈ H∗ and the corresponding num-
bers λ for which the equation (3.1) is satisfied for all functions ϕ in a Hilbert space
H of functions.

For instance, let H̃ be the Hilbert space with the metric (2.18). As we know, the

metric on the dual space H̃∗ is given by the kernel e−
x2

2 δ(x − y). The generalized
eigenvalue problem for the operator Â = −i d

dx
is given by

f

(
−i d
dx
ϕ

)
= pf (ϕ) . (3.2)

The equation (3.2) must be satisfied for every ϕ in H̃. The functionals

f(x) = eipx (3.3)

are the eigenvectors of A. Note that these eigenvectors belong to H̃∗ so that the
generalized eigenvalue problem has a solution.

As before, the Fourier transform σ : H̃ −→ H,

ψ(k) = (σϕ)(k) =

∫
ϕ(x)eikxdx, (3.4)

induces a Hilbert structure on the space H = σ(H̃). Relative to this structure σ is
an isomorphism of the Hilbert spaces H̃ and H. The inverse transform ω = σ−1 is
given by

(ωψ)(x) =
1

2π

∫
ψ(k)e−ikxdk. (3.5)



8 Alexey A. Kryukov

Notice that the Fourier transform of eipx is δ(k − p) which is to say again that the
space H∗ dual to H contains delta-functions. As we know from (2.13), the kernel

of the metric on H∗ is proportional to e−
1
2
(x−y)2 .

Using transformations σ, ω we can rewrite the generalized eigenvalue problem
(3.2) as

ω∗f(σÂωψ) = pω∗f(ψ), (3.6)

where ωψ = ϕ. We have:

Âωψ = −i d
dx

1

2π

∫
ψ(k)e−ikxdk =

1

2π

∫
kψ(k)e−ikxdk. (3.7)

Therefore,

(σÂωψ)(k) = kψ(k). (3.8)

So, the new eigenvalue problem is as follows:

g(kψ) = pg(ψ). (3.9)

Thus, we have the eigenvalue problem for the operator of multiplication by the
variable. The eigenfunctions here are the elements of H∗ given by

g(k) = δ(p− k), (3.10)

where g = ω∗f . Indeed,

(ω∗f)(k) =
1

2π

∫
f(x)e−ikxdx =

1

2π

∫
eipxe−ikxdx = δ(p− k). (3.11)

Two important things are happening here. First of all, for the given operator Â
we have been able to find an appropriate Hilbert space of generalized functions so
that the generalized eigenvectors of the operator are its elements. We also conclude
that each eigenvalue problem actually defines a whole family of “unitary equivalent”
problems obtained via isomorphisms of Hilbert spaces.

This is analogous to the case of a single tensor equation on Rn considered in
different linear coordinates (i.e. in different bases). Instead of a change in nu-
meric components of vectors and other tensors we now have a change in functions,
operators on spaces of functions etc.

The idea is then to consider different equivalence classes of functional objects
related by isomorphisms of Hilbert spaces as realizations of invariant objects, which
themselves are independent of any particular functional realization. In particular,
the eigenvalue problems (3.2), and (3.9) can be considered as two coordinate ex-
pressions of a single equation which is itself independent of a chosen realization. In
applications, such realizations, although mathematically equivalent, may represent
different physical situations. In the next section this approach will be formalized.
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4 Functional coordinate formalism on Hilbert manifolds

Here are the main definitions:

A string space S is an abstract topological vector space topologically linearly iso-
morphic to a separable Hilbert space.

The elements Φ,Ψ, ... of S are called strings.

A Hilbert space of functions (or a coordinate space) is either a Hilbert space H,
elements of which are equivalence classes of maps between two given subsets of Rn

or the Hilbert space H∗ dual to H.

A linear isomorphism eH from a Hilbert space H of functions onto S is called a
string basis (or a functional basis) on S.

The inverse map e−1
H : S −→ H is called a linear coordinate system on S (or a linear

functional coordinate system).

Analogy: S is analogous to the abstract n-dimensional vector space V . A coordi-
nate space H is analogous to a particular realization Rn of V as a space of column
vectors. A string basis eH is analogous to the ordinary basis {ek} on V . Namely, the
string basis identifies a string with a function: if Φ ∈ S, then Φ = eH(ϕ) for a unique
ϕ ∈ H. The ordinary basis {ek} identifies a vector with a column of numbers. It
can be therefore identified with an isomorphism ek : Rn −→ V . The inverse map
e−1
k is then a global coordinate chart on V or a linear coordinate system on V .

Remark. Of course, any separable Hilbert space S can be realized as a space l2 of
sequences by means of an orthonormal basis on S. So it seems that we already have
a clear infinite-dimensional analogue of the n-dimensional vector space. However,
such a realization is too restrictive. In fact, unlike the case of a finite number of
dimensions, there exist various realizations of S as a space of functions. These
realizations are also “numeric” and useful in applications and they should not be
discarded. Moreover, we will see that they can be put on an equal footing with the
space l2.

The basis eH∗ : H∗ −→ S∗ is called dual to the basis eH if for any string
Φ = eH(ϕ) and for any functional F = eH∗(f) in S∗ the following is true:

F (Φ) = f(ϕ). (4.1)

Analogy: Dual string basis eH∗ is analogous to the ordinary basis {em} dual to a
given basis {ek}. Indeed, if Φ is a vector in the finite dimensional vector space V ,
and F ∈ V ∗ is a linear functional on V , then

F (Φ) = fkϕk, (4.2)
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where fk and ϕk are components of F and Φ in the bases {em} and {ek} respectively.

By definition the string space S is isomorphic to a separable Hilbert space.
Assume that S itself is a Hilbert space. Assume further that the string bases eH
are isomorphisms of Hilbert spaces. That is, the Hilbert metric on any coordinate
space H is determined by the Hilbert metric on S and the choice of a string basis.
Conversely,

Proposition 4.1 The choice of a coordinate Hilbert space determines the
corresponding string basis eH up to a unitary transformation.

Proof. Indeed, with H fixed, any two bases eH , ẽH can only differ by an automor-
phism of H, i.e., by a unitary transformation.

Assume for simplicity that H is a real Hilbert space (generalization to the case
of a complex Hilbert space will be obvious). We have:

(Φ,Ψ)S = G(Φ,Ψ) = G(ϕ,ψ) =

∫
g(x, y)ϕ(x)ψ(y)dxdy = gxyϕ

xψy, (4.3)

where G : S× S −→ R is a bilinear functional defining the inner product on S and
G : H ×H −→ R is the induced bilinear functional. As before, the integral sign is
a symbol of action of G on H ×H and the expression on the right is a convenient
form of writing this action.

A string basis eH in S will be called orthogonal if for any Φ,Ψ ∈ S we have

(Φ,Ψ)S = fϕ(ψ), (4.4)

where fϕ is a regular functional and Φ = eHϕ, Ψ = eHψ as before. That is,

(Φ,Ψ)S = fϕ(ψ) =

∫
ϕ(x)ψ(x)dµ(x), (4.5)

where
∫

here denotes an actual integral over a µ-measurable set D ∈ Rn which is
the domain of definition of functions in H.

If the integral in (4.5) is the usual Lebesgue integral and/or a sum over a discrete
index x, the corresponding coordinate space will be called an L2-space. In this case
we will also say that the basis eH is orthonormal. If the integral is a more general
Lebesgue-Stieltjes integral, the coordinate space defined by (4.5) will be called an
L2-space with the weight µ and the basis eH will be called orthogonal.

Analogy: An orthonormal string basis is analogous to the usual orthonormal basis.
In fact, if ϕk, ψk are components of vectors Φ,Ψ in an orthonormal basis ek on an
Euclidean space V , then (Φ,Ψ)V = δklϕ

kψl = ϕkψk, which is similar to (4.5).
Roughly speaking, the metric on Hilbert spaces defined by orthogonal string

bases has a “diagonal” kernel. In particular, the kernel may be proportional to the
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delta-function (as in L2(R)) or to the Krœnecker symbol (as in l2). More general
coordinate Hilbert spaces have a “non-diagonal” metric. The metrics (2.14) and
(2.17) provide examples.

It is important to distinguish clearly the notion of a string basis from the notion
of an ordinary basis on a Hilbert space of functions. Namely, a string basis permits
us to represent invariant objects in string space (strings) in terms of functions,
which are elements of a Hilbert space of functions. A basis on the space of functions
then allows us to represent functions in terms of numbers; that is, in terms of the
components of the functions in the basis. On the other hand, we have the following
proposition:

Proposition 4.2 The ordinary orthonormal basis on S can be identified with the
string basis el2 : l2 −→ S.

Proof. The ordinary orthonormal basis on S provides an isomorphism ω from S onto
l2 which associates with each element Φ in S the sequence of its Fourier components
in the basis. Conversely, given an isomorphism ω : S −→ l2, we can associate
with each Φ ∈ S the sequence ω(Φ) of its Fourier components in a unique (for all Φ)
orthonormal basis. Therefore, the ordinary orthonormal basis on S can be identified
with the string basis el2 = ω−1.

A linear coordinate transformation on S is an isomorphism ω : H̃ −→ H of
Hilbert spaces which defines a new string basis e

H̃
: H̃ −→ S by e

H̃
= eH ◦ ω.

Proposition 4.3 Let ϕ = e−1
H Φ, Â = e−1

H ÂeH and Ĝ =
(
e−1
H

)∗
Ĝe−1

H be the

coordinate expressions of a string Φ, an operator Â : S −→ S and the metric
Ĝ : S −→ S∗ in a basis eH . Let ω : H̃ −→ H be a linear coordinate transformation
on S. Then we have the following transformation laws:

ϕ = ωϕ̃ (4.6)

Ĝ
H̃

= ω∗Ĝω (4.7)

Â
H̃

= ω−1Âω, (4.8)

where ϕ̃, Â
H̃

and Ĝ
H̃

are coordinate functions of Φ, Â and Ĝ in the basis e
H̃

.

Proof. This follows immediately from

(Ĝϕ, Âψ) = (ω∗Ĝωϕ̃, ω−1Âωψ̃) = (Ĝ
H̃
ϕ̃, Â

H̃
ψ̃). (4.9)

The correspondence between the classical and “string” definitions can be sum-
marized in the table:
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basis eH : H → S ek : Rn → V

inner product (Φ,Ψ)S =
∫
g(x, y)ϕ(x)ψ(y)dxdy (Φ,Ψ)V = gklϕ

kψl

dual basis eH∗ , F (Φ) = f(ϕ) ek, F (Φ) = fkϕ
k

ortho basis eL2 , (Φ,Ψ)S =
∫
ϕ(x)ψ(x)dx ek, (Φ,Ψ)V = δklϕ

kψl

change of basis e
H̃

= eH ◦ ω, Ĝ
H̃

= ω∗Ĝω,... e
k̃

= ekω
k

k̃
, Ĝ

k̃l̃
=...

Table 1: Classical versus string bases

More generally, consider an arbitrary Hilbert manifold S modeled on S. Let
(Uα, πα) be an atlas on S . A collection of quadruples (Uα, πα, ωα, Hα), where each
Hα is a Hilbert space of functions and ωα is an isomorphism of S onto Hα is called a
functional atlas on S . A collection of all compatible (i.e., related by diffeomorphisms)
functional atlases on S is called a coordinate structure on S . A Hilbert manifold
S with the above coordinate structure is called a string manifold or a functional
manifold.

Let (Uα, πα) be a chart on S . If p ∈ Uα, then ωα◦πα(p) is called the coordinate of
p. The map ωα ◦πα : Uα −→ Hα is called a coordinate system. The diffeomorphisms
ωβ ◦ πβ ◦ (ωα ◦ πα)−1 : ωα ◦ πα(Uα ∩ Uβ) −→ ωβ ◦ πβ(Uα ∩ Uβ) are called string (or
functional) coordinate transformations.

As S is a differentiable manifold one can also introduce the tangent bundle struc-
ture τ : TS −→ S and the bundle τ r

s : T r
s S −→ S of tensors of rank (r, s). Whenever

necessary to distinguish tensors (tensor fields) on ordinary Hilbert manifolds from
tensors on manifolds with a coordinate structure, we will call the latter tensors the
string tensors or the functional tensors. Accordingly, the equations invariant under
string coordinate transformations will be called the string tensor or the functional
tensor equations.

A coordinate structure on a Hilbert manifold permits one to obtain a functional
description of any string tensor. Namely, let Gp(F1, ..., Fr,Φ1, ...,Φs) be an (r, s)-
tensor on S . The coordinate map ωα ◦ πα : Uα −→ Hα for each p ∈ Uα yields the
linear map of tangent spaces dρα : Tωα◦πα(p)Hα −→ TpS , where ρα = π−1

α ◦ ω−1
α .

This map is called a local coordinate string basis on S . Notice that for each p the
map eHα ≡ eHα(p) is a string basis as defined earlier. Therefore, the local dual basis
eH∗

α
= eH∗

α
(p) is defined for each p as before and is a function of p.

We now have Fi = eH∗
α
fi, and Φj = eHαϕj for any Fi ∈ T ∗

p S , Φj ∈ TpS and
some fi ∈ H∗

α, ϕj ∈ Hα. Therefore the equation

Gp(F1, ..., Fr,Φ1, ...,Φs) = Gp(f1, ..., fr, ϕ1, ..., ϕs) (4.10)

defines component functions of the (r, s)-tensor Gp in the local coordinate basis eHα .
There are two important aspects associated with the formalism. First of all, by

changing the string basis eH we can reformulate a given problem on Hilbert space
in any way we want. In particular, we can go back and forth between spaces of
smooth and generalized functions and choose the one in which the problem in hand
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is simpler to deal with. In this respect the theory of generalized functions is now a
part of the above formalism on Hilbert spaces.

The second aspect is that we can now work directly with families of “unitary
equivalent” problems rather than with particular realizations only. In fact, a sin-
gle string tensor equation describes infinitely many equations on various spaces of
functions.

In the following sections various examples and related propositions and theorems
will illustrate the importance of these two aspects.

5 The generalized eigenvalue problem as a functional

tensor equation

Let us begin with a string basis independent formulation of the discussed earlier gen-
eralized eigenvalue problem. Namely, consider the generalized eigenvalue problem

F (ÂΦ) = λF (Φ), (5.1)

for a linear operator Â on S. The problem consists in finding all functionals F ∈
S∗ and the corresponding numbers λ for which the string tensor equation (5.1) is
satisfied for all Φ ∈ S.

Assume that the pair F, λ is a solution of (5.1) and eH is a string basis on S.
Then we have

e∗HF (e−1
H ÂeHϕ) = λe∗HF (ϕ), (5.2)

where eHϕ = Φ and e−1
H ÂeH is the representation of Â in the basis eH . By defining

e∗HF = f and Â = e−1
H ÂeH , we have

f(Âϕ) = λf(ϕ). (5.3)

The latter equation describes not just one eigenvalue problem, but a family of such
problems, one for each string basis eH . As we change eH , the operator Â in general
changes as well, as do the eigenfunctions f .

Assume that in a particular string basis eH the problem (5.3) is the already
discussed generalized eigenvalue problem for the operator of differentiation −i d

dx
.

Then (5.1) is nothing but the corresponding “realization independent” generalized
eigenvalue problem given by a functional tensor equation.

6 The spectral theorem

Here we apply the coordinate formalism to reformulate the standard results of linear
algebra in Hilbert spaces.
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Definition 6.1 A string basis eH is called the proper basis of a linear operator A

on S with eigenvalues (eigenvalue function) λ = λ(k), if

AeH(ϕ) = eH(λϕ) (6.1)

for any ϕ ∈ H.

As any string basis, the proper basis of A is a linear map from H onto S and a
numeric function λ is defined on the same set as functions ϕ ∈ H.

By rewriting (6.1) as
eH

−1AeH(ϕ) = λϕ (6.2)

we see that the problem of finding a proper basis of A is equivalent to the problem
of finding such a string basis eH in which the action of A reduces to multiplication
by a function λ.

Because the expression “the adjoint of an operator” has at least two different
meanings, let’s accept the following:

Definition 6.2 Let Â be a continuous linear operator which maps a space H into
a space H̃. Then the adjoint Â∗ of operator Â maps the space H̃∗ into the space
H∗ according to

(Â∗f, ϕ) = (f, Âϕ) (6.3)

for any ϕ ∈ H, f ∈ H̃∗. Assume further that H is continuously embedded into
an L2-space and under the identification L∗

2 = L2 the action of Â∗ and Â on their
common domain H coincide. Then the operator Â will be called self-adjoint.

Definition 6.3 Let A be a continuous linear operator on a Hilbert space H. Then
the Hermitian conjugate operator A+ of A is defined on H by

(A+ϕ,ψ)H = (ϕ,Aψ)H , (6.4)

for any ϕ,ψ ∈ H. If A = A+, the operator is called Hermitian.

Let now A be given on H and let Ĝ : H −→ H∗ define a metric on H. Then

(Ĝϕ,Aψ) = (A∗Ĝϕ, ψ) = (ĜA+ϕ,ψ) (6.5)

and the relationship between the operators is as follows:

A+ = Ĝ−1A∗Ĝ. (6.6)

Theorem 6.4 Any Hermitian operator Â on S possesses a proper basis with the
eigenvalue function λ(x) = x.

Proof. The theorem simply says that any Hermitian operator is unitary equivalent
to the operator of multiplication by the variable, which is the standard result of
spectral theorem.



Linear algebra and differential geometry on abstract Hilbert space 15

Theorem 6.5 Let A be an Hermitian operator on S and let eH be a proper basis
of Â. Assume that H here is a Hilbert space of numeric valued functions on a
(possibly infinite) interval (a, b) and the eigenvalue function is given by λ(x) = x,
x ∈ (a, b). Assume further that the fundamental space K of infinitely differentiable
functions of bounded support in (a, b) is continuously embedded into H as a dense
subset. Then the proper basis of Â is orthogonal.

Proof. In the proper basis eH of Â we have

(Φ,AΨ)S = (eHϕ,AeHψ)S = (ϕ, λψ)H =

∫
g(x, y)ϕ(x)yψ(y)dxdy. (6.7)

In agreement with section 4, the integral symbol is used here for the action of the
bilinear metric functional G with the kernel g. Hermicity gives then

∫
g(x, y)(x− y)ϕ(x)ψ(y)dxdy = 0 (6.8)

for any ϕ,ψ ∈ H.

Let us show that g(x, y) = a(x)δ(x − y), i.e. H must coincide with the space
L2(a, b) with weight a(x). Note first of all that because K →֒ H, any bilinear
functional on H is also a bilinear functional on K. Also, by the kernel theorem [5]
any bilinear functional G(ϕ,ψ) =

∫
g(x, y)ϕ(x)ψ(y)dxdy on the space K of infinitely

differentiable functions of bounded support has the form

G(ϕ,ψ) = (f, ϕ(x)ψ(y)), (6.9)

where f is a linear functional on the space K2 of infinitely differentiable functions
ϕ(x, y) of bounded support in (a, b) × (a, b) ⊂ R2. If Ω ⊂ R2 is a bounded domain,
ϕ,ψ ∈ K are arbitrary with support in Ω and x 6= y on Ω, then linear combinations of
the functions (y − x)ϕ(x)ψ(y) form a dense subset in the space K2(Ω) of infinitely
differentiable functions with support in Ω. From (6.8) it follows then that the
functional f in (6.9) is zero on K2(Ω) for any such Ω. Therefore, the bilinear
functional G is concentrated on the diagonal x = y in R2. That is, G is equal to
zero on all pairs of functions ϕ,ψ ∈ H such that ϕ(x)ψ(y) is equal to zero in a
neighborhood of the diagonal. Therefore G reduces to a finite sum

G(ϕ,ψ) =

∫ n∑

k=0

ak(x)D
kδ(y − x)(y − x)ϕ(x)ψ(y)dxdy, (6.10)

where Dk is the derivative of order k with respect to y (see [4]).

Notice that ak(x) 6= 0 almost everywhere on R as otherwise G would not be
positive-definite. “Integration by parts” in (6.10) gives zero for k = 0 term and

±
∫
pψ(p−1)(x)ap(x)ϕ(x)dx (6.11)
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for k = p term and any 0 < p ≤ n. By choosing ψ so that the functions ψ(p) are
linearly independent in L2(a, b), we conclude that the corresponding components of
ap(x)ϕ(x) are equal to zero which is not true for a general ϕ ∈ K. Therefore, n must
be equal to zero and the functionalG is given by the kernel g(x, y) = a(x)δ(x−y). As
K is dense in H, this kernel also defines the bilinear functional on H. We conclude
that the proper basis of Â is orthogonal (as defined in section 4).

Note that the obtained result can be generalized to the case of functions of
several variables on a domain D ⊂ Rn. Note also that this theorem is nothing but
the generalization to the case of a continuous spectrum of the well known theorem
on orthogonality of eigenvectors of an Hermitian operator corresponding to different
eigenvalues.

The conclusion of the theorem seems to favor the use of L2-spaces when working
with Hermitian operators. Notice however, that in an orthogonal proper basis of Â

with H = L2(a, b) we have

(Φ, ÂΨ)S = (f, λg)L2 =

∫
f(x)λ(x)g(x)dx, (6.12)

where f, g ∈ L2(a, b). Therefore, it is impossible for f(x) to be a (generalized)
eigenvector of the operator Â of multiplication by the function λ(x). Indeed, the
eigenvectors of such an operator would be δ-functionals and the latter ones do not
belong to L2(a, b).

To include such functionals in the formalism we need to consider Hilbert spaces
containing “more” functions than L2(a, b). By the above this in general requires
consideration of non-Hermitian operators.

Example. The operator of multiplication by the variable Â = x has no eigenvectors
in L2(0, 1). Consider then a different Hilbert space H∗ of functions of a real variable
x ∈ (0, 1) with the metric G given by a smooth kernel g(k,m) and with the dual
space H consisting of continuous functions only. We have:

(Gϕ, Âψ) =

∫
g(k,m)ϕ(k)mψ(m)dkdm. (6.13)

Although the operator Â = x is not Hermitian on H, it is self-adjoint (see Definition
6.2). In fact, if ϕ,ψ are continuous functions, then

∫
g(k,m)ϕ(k)mψ(m)dkdm =

∫
mg(k,m)ϕ(k)ψ(m)dkdm (6.14)

So on the functionals

F (m) =

∫
g(k,m)ϕ(k)dk (6.15)

which are functions in H we have:

F (mψ) = (mF )(ψ). (6.16)
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Note also that the eigenfunctions of Â = x are in H∗.
The example shows that at least in some cases there is a possibility to accom-

modate the Hermicity of an operator in L2, the self-adjointness of its restriction Â
onto a Hilbert subspace H ⊂ L2 and the inclusion of generalized eigenvectors of Â
into the conjugate space H∗. Before formalizing and generalizing this statement we
need the following definition (see [5]):

Definition 6.6 Let H∗
λ be the eigenspace of Â consisting of all the generalized

eigenvectors fλ of Â whose eigenvalue is λ. Associate with each element ϕ ∈ H
and each number λ a linear functional ϕ̃λ on H∗

λ which takes the value fλ(ϕ) on
the element fλ. This gives vector-functions of λ whose values are linear functionals
on H∗

λ. The correspondence ϕ −→ ϕ̃λ is called the spectral decomposition of ϕ
corresponding to the operator Â. The set of generalized eigenvectors of Â is called
complete if ϕ̃λ = 0 implies ϕ = 0.

We have now the following

Theorem 6.7 Let B̂ be an Hermitian operator on a Hilbert space L2. Then there
exists a topological Hilbert subspace H of L2 which is dense in L2 and such that the
restriction Â of B̂ onto H is a self-adjoint operator and the conjugate space H∗

contains the complete set of eigenvectors of Â. Moreover, there exists a coordinate

transformation ρ : H −→ H̃ such that the transformed operator
̂̃
A = ρÂρ−1 is the

operator of multiplication by x.

Proof. Notice first of all that the property of an operator Â to be Hermitian is
invariant under functional coordinate transformations.

Let ω : L2 −→ L2(R) be an isomorphism of Hilbert spaces. By the above
B̂1 = ωB̂ω−1 is an Hermitian operator in L2(R).

Let W be the Schwartz space of infinitely differentiable functions on R. It is
known that W is a nuclear space and the triple W ⊂ L2(R) ⊂W ∗ is a rigged Hilbert
space [5]. The operator B̂1 is an Hermitian operator in the rigged space. From [5] we
know that the operator B̂1 has a complete set of generalized eigenvectors belonging
to W ∗.

Let us choose a Hilbert space H1 such that H1 is a topological subspace of W
which is also dense in L2(R). We know from the Theorem 2.6 that such a Hilbert
spaceH1 exists. AsW ∗ ⊂ H∗

1 , the spaceH∗
1 contains the complete set of eigenvectors

of the restriction Â1 of B̂1 onto H1. The image H = ω−1(H1) is a Hilbert subspace
of L2 with the induced Hilbert structure. It is dense in L2 and on this subspace
the operator Â = ω−1Â1ω is self-adjoint and coincides with the original operator B̂.
This proves the first part of the theorem.

Now, by the abstract theorem on spectral decomposition of Hermitian operators
there exists a realization τ : L2(R) −→ L̃2 such that the operator B̂1 is given by
multiplication by x. Here L̃2 denotes in general a direct integral of Hilbert spaces
of the L2-type.
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Consider the restriction of τ onto H1. As τ is an isomorphism, it induces a
Hilbert structure on the image τ(H1) = H̃.

Consider then the isomorphism κ = τ ◦ ω : H −→ H̃ as a coordinate trans-
formation. This transformation takes the operator Â in H into the operator of
multiplication by x in H̃. This completes the proof.

Assume now that Â is the operator constructed in the theorem. That is, Â is a
self-adjoint operator in a Hilbert space H such that the conjugate space H∗ contains
the complete set of generalized eigenvectors fλ of Â. Let ϕ −→ ϕ̃λ be the spectral
decomposition of the element ϕ ∈ H corresponding to the operator Â. Let eH be a
string basis on S and Φ = eHϕ, Fλ = (e∗H)−1fλ, Â = eHÂe

−1
H as always.

The spectral decomposition ϕ −→ ϕ̃λ establishes the correspondence Φ −→ ϕ̃λ

which is the spectral decomposition of the string Φ corresponding to the operator
Â.

More directly, to construct Φ −→ ϕ̃λ we introduce the eigenspace S∗
λ of Â which

consists of all eigenvectors Fλ of Â whose eigenvalue is λ. Then we associate with
each string Φ ∈ S and each number λ a linear functional ϕ̃λ on S∗

λ which takes the
value Fλ(Φ) on the element Fλ.

As the set of generalized eigenvectors fλ of Â is complete, so is the set of eigenvec-
tors Fλ of the operator Â. In fact, whenever ϕ̃λ = 0 we have ϕ = 0 by completeness
of the set of eigenvectors fλ. But then Φ = 0 as well, i.e. the set of eigenvectors Fλ

of Â is complete.

The correspondence ρ
H̃

: Φ −→ ϕ̃λ is an isomorphism of linear spaces S and

H̃ = ρ
H̃

(S). In fact, assume that to strings Φ1,Φ2 and to a number λ it corresponds

respectively linear functionals ϕ̃λ1, ϕ̃λ2 on the eigenspace S∗
λ of Â taking values

Fλ(Φ1), Fλ(Φ2) on the element Fλ. Then to the string Φ = αΦ1 + βΦ2 and to the
same number λ it corresponds the functional ϕ̃λ on S∗

λ taking the value Fλ(αΦ1 +
βΦ2) = αFλ(Φ1) + βFλ(Φ2). That means that ρ

H̃
is linear. The fact that ρ

H̃
is

injective follows from completeness of the set of eigenvectors Fλ of Â. In fact, if
ρ

H̃
(Φ) = 0, then ϕ̃λ = 0, thus, Φ = 0.

The isomorphism ρ
H̃

induces a Hilbert structure on H̃ = ρ
H̃

(S). Therefore it

becomes an isomorphism of Hilbert spaces S and H̃.

Theorem 6.8 The string basis e
H̃

= ρ−1

H̃
is proper.

Proof. To verify, notice that if Φ −→ ϕ̃λ is the spectral decomposition of Φ, then
the spectral decomposition of Ψ = ÂΦ is ψ̃λ = λϕ̃λ. In fact, for any functional
Fλ ∈ S∗

λ we have

Fλ(Ψ) = Fλ(ÂΦ) = λFλ(Φ), (6.17)

so that

ψ̃λ = λϕ̃λ. (6.18)
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We therefore conclude that

F (ÂΦ) = F (e−1

H̃
e
H̃
ÂΦ) = (e−1

H̃
)∗F (λϕ̃λ) = f̃(λϕ̃λ), (6.19)

where f̃ = (e−1

H̃
)∗F . By (6.1) this means that the basis e

H̃
is proper.

Moreover, in the considered case the complete set of eigenvectors Fλ of Â belongs
to S∗. Therefore, the complete set of eigenvectors of the operator of multiplication
by λ on H̃ belongs to H̃∗.

Definition 6.9. If a proper basis eH is such that the complete set of eigenvectors
of the operator Â in this basis belongs to H∗ (alternatively, the complete set of
eigenvectors of Â belongs to S∗), then the basis eH is called the string basis of
eigenvectors of Â or the string eigenbasis of Â.

We have thus proven the following theorem.

Theorem 6.10 If a complete set of eigenvectors Fλ of an operator Â is contained in
S∗, then there exists a string eigenbasis of A. That is, assume Fλ(ÂΦ) = λFλ(Φ),
where the eigenvectors Fλ of Â form a complete set in S∗. Then there exists a string
basis e

H̃
: H̃ −→ S such that for any functional F ∈ S∗ and any string Φ we have

F (AΦ) = f̃(λϕ̃λ), where ϕ̃λ and f̃ are coordinates of Φ and F in the basis e
H̃

and
its dual respectively.

It is well known that many operators useful in applications are not bounded.
However, by an appropriate choice of metric on the image of a linear operator Â
one can ensure the continuity of Â. In other words, one can consider an unbounded
operator Â on a Hilbert space H as a bounded operator which maps H into another
Hilbert space H̃. In particular, we have the following

Theorem 6.11 Let Â be an invertible (possibly unbounded) operator on a dense
subset D(Â) ⊂ L2 having a range R(Â) ⊃ D(Â). Then there exists a Hilbert metric
on R(Â), in which Â is a bounded operator from D(Â) onto R(Â).

Proof. For any f, g ∈ R(Â) define the inner product (f, g)H by

(f, g)H = (Â−1f, Â−1g)L2 . (6.20)

Then
∥∥∥Âf

∥∥∥
H

= ‖f‖L2
for any f ∈ D(Â). That is, Â is bounded as a map from

D(Â) with the metric L2 onto R(Â) with the metric (6.20). Note that when Â is
extended to the entire L2 it becomes an isomorphism from L2 onto the Hilbert space
H which is a completion of R(Â) in the metric (6.20).
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Let us also remark that if eH and e
H̃

are string bases, the realization Â =

e−1

H̃
ÂeH of a continuous operator Â : S −→ S may not be continuous when consid-

ered as a map into H. In other words, the unbounded operators in a Hilbert space
H may be realizations of continuous operators on S.

Notice finally that when a realization Â of operator Â : S −→ S is a map
between two different Hilbert spaces, it becomes useful to generalize the Definition
6.1 of the proper basis. Namely, for any F ∈ S∗,Φ ∈ S and Â : S −→ S we have

F (ÂΦ) = F (ÂeHϕ) = F (e
H̃
e−1

H̃
ÂeHϕ) = e∗

H̃
F (e−1

H̃
ÂeHϕ) = f(Âϕ), (6.21)

where f = e∗
H̃
F ∈ H̃∗ and Â : H −→ H̃ is given by Â = e−1

H̃
ÂeH . We then have

the following

Definition 6.12 The realization Â = e−1

H̃
ÂeH of Â is called proper if for any

F ∈ S∗, Φ ∈ S we have

F (ÂΦ) = f(Âϕ) = f(λϕ), (6.22)

where f = e∗
H̃
F , ϕ = e−1

H Φ and λ is a function such that the operator of multiplica-

tion by λ maps H into H̃.

If H = H̃ this is equivalent to the Definition 6.1.

7 Isomorphisms of Hilbert spaces preserving locality of

operators

We saw that a single eigenvalue problem for an operator on the string space leads
to a family of eigenvalue problems in particular string bases. Obviously, it is a
general feature of tensor equations in the formalism: a specific functional form of
an equation depends on the choice of functional coordinates.

In the process of changing coordinates one may desire to preserve some specific
properties of the equation. It becomes then important to describe all coordinate
transformations preserving these properties.

Definition 7.1 An operator Â on a Hilbert space H is called differential or local if

Â =
∑

|q|≤r

aqD
q. (7.1)

Here x ∈ Rn, r is a nonnegative integer, q = (q1, ..., qn) is a set of nonnegative
integers, |q| = q1 + ... + qn, the coefficients aq are functions of x = (x1, ..., xn) and

Dq = ∂|q|

∂x1
q1 ...∂xn

qn .
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It is easy to see that locality of an operator is not a coordinate invariant property.
That is, the operator which is local in one system of functional coordinates does not
have to be local in a different system of coordinates. At the same time, the property
of being local is extremely important in applications.

Let us describe the coordinate transformations ω : H̃ −→ H mapping differential
operators on H into differential operators on a Hilbert space H̃. We assume here
that H, H̃ are either spaces of sufficiently smooth functions of bounded support (or
sufficiently fast decreasing at infinity), or dual to such spaces.

All such transformations can be found by solving the equation

ω−1Âω = B̂, (7.2)

where Â, B̂ are appropriate differential operators. In expanded form we have:

ω−1
∑

|q|≤r

aqD
qω =

∑

|q|≤s

bqD
q. (7.3)

The latter equation can be also written in terms of the kernels of Â and B̂:
∫ ∑

|q|≤r

aq(x)D
qδ(z − x)ω(z, y)dz =

∫ ∑

|q|≤s

ω(x, z)bq(z)D
qδ(y − z)dz. (7.4)

Example. Let H, H̃ are spaces of functions of a single variable, Â = aD,B̂ = b,
where a, b are functions, the equation (7.3) reduces to

aDω = ωb. (7.5)

By solving this differential equation we see that the kernel ω(x, y) of ω has the form

ω(x, y) = g(y)ec(x)b(y), (7.6)

where c(x) = −
∫

dx
a(x) and g is an arbitrary smooth function. To be a coordinate

transformation ω must be an isomorphism as well. In particular, the Fourier trans-
form is a solution of (7.5) with

ω(x, y) = eixy. (7.7)

More generally, if Â, B̂ contain only one term each, the equation (7.4) yields

a(x)
∂nω(x, y)

∂xn
= (−1)m∂

m (ω(x, y)b(y))

∂ym
. (7.8)

Example. Consider the equation (7.8) with n = m = 1 assuming a(x) and b(y) are
functions. In this case the equation reads

a(x)
∂ω(x, y)

∂x
+
∂(ω(x, y)b(y))

∂y
= 0. (7.9)
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Let us look for a solution in the form

ω(x, y) = ef(x)g(y). (7.10)

Then (7.9) yields

a(x)f ′(x)g(y) + b(y)f(x)g′(y) + b′(y) = 0. (7.11)

If b(y) = 1, (7.11) is a separable equation and we have

a(x)f ′(x)
f(x)

= −g
′(y)
g(y)

= C, (7.12)

where C is a constant. Solving this we obtain,

ω(x, y) = eCe

∫
C1

a(x)
dx

e−C1y

. (7.13)

Taking for example C = C1 = 1 and a(x) = x, we have

ω(x, y) = exe−y

. (7.14)

The corresponding transformation changes the operator xD into the operator D.

8 Isomorphisms of Hilbert spaces preserving the deriv-

ative operator

Among solutions of (7.8) those preserving the derivative operator D are of particular
interest. To find them consider the equation (7.8) with n = m = 1 and with the
constant coefficients a = b = 1. Then (7.8) yields the following equation:

∂ω(x, y)

∂x
+
∂ω(x, y)

∂y
= 0. (8.1)

The smooth solutions of (8.1) are given by

ω(x, y) = f(x− y), (8.2)

where f is an arbitrary infinitely differentiable function on R. In particular, the
function

ω(x, y) = e−(x−y)2 (8.3)

satisfies (8.1). Also, we saw in section 2 that the corresponding transformation con-
sidered on an appropriate Hilbert space H̃ is injective and induces a Hilbert structure
on the image H. Therefore, it provides an example of a coordinate transformation
that preserves the derivative operator D and, more generally, Dq.
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When H, H̃ are spaces of functions of n variables, a similar role is played by the
function

ω(x, y) = e−(x−y)2 (8.4)

with x = (x1, ..., xn), y = (y1, ..., yn) and the standard Euclidean metric on the space
of variables.

Theorem 8.1 Let L be a polynomial function of n variables. Let u, v ∈ H̃ be
functionals on the space K of functions of n variables which are infinitely
differentiable and have bounded supports. Assume that u is a generalized solution of

L

(
∂

∂x1
, ...,

∂

∂xn

)
u = v. (8.5)

Then there exists a smooth solution ϕ of

L

(
∂

∂x1
, ...,

∂

∂xn

)
ϕ = ψ, (8.6)

where ϕ = ωu, ψ = ωv and ω is as in (8.4).

Proof. Consider first the case of the ordinary differential equation

d

dx
u(x) = v(x). (8.7)

Assume u is a generalized solution of (8.7). Define ϕ = ωu and ψ = ωv, where ω is
as in (8.3). Notice that ϕ,ψ are infinitely differentiable. In fact, any functional on
the space K of infinitely differentiable functions of bounded support acts as follows
(see [4]):

(f, ϕ) =

∫
F (x)ϕ(m)(x)dx, (8.8)

where F is a continuous function on R. Applying ω to f shows that the result is a
smooth function.

As ω−1 d
dx
ω = d

dx
, we have

ω−1 d

dx
ωu = v. (8.9)

That is,
d

dx
ϕ(x) = ψ(x) (8.10)

proving the theorem in this case. The higher order derivatives can be treated simi-
larly as

ω−1 d
n

dxn
ω = ω−1 d

dx
ωω−1 d

dx
ω...ω−1 d

dx
ω. (8.11)

That is, transformation ω preserves derivatives of any order. Generalization to the
case of several variables is straightforward.
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9 Transformations preserving a product of functions

Consider a simple algebraic equation

a(x)f(x) = h(x), (9.1)

where f is an unknown (generalized) function of a single variable x and h is an
element of a Hilbert space H of functions on a set D ⊂ R. To investigate trans-
formation properties of this equation we need to interpret it as a tensor equation
on the string space S. The right hand side is a function. Therefore this must be a
“vector equation” (i.e. both sides must be (1, 0)-tensors on the string space). If f
is to be a function as well, a must be a (1, 1)-tensor.

To preserve the product-like form of the equation we need such a coordinate
transformation ω : H̃ −→ H that

ω−1aω = b. (9.2)

In this case the equation (9.1) in new coordinates is

b(x)ϕ(x) = ψ(x), (9.3)

where h = ωψ, f = ωϕ, and ϕ,ψ ∈ H̃.

Equation (9.2) is clearly satisfied whenever a = b = C, where C is a constant
function. On another hand, whenever b′ 6= 0 and H contains sufficiently many
functions, we deduce as in the Theorem 6.5 that ω(x, y) = d(x)δ(x − y) for some
function d.

The obtained result then says that the operator of multiplication can be pre-
served only in trivial cases when a(x) = C or ω itself is an operator of multiplication
by a function.

In particular, the product of non-constant functions of one and the same variable
is not an invariant operation under a general transformation of functional coordi-
nates.

10 Coordinate transformations of nonlinear functional

tensor equations

It is known that the theory of generalized functions has been mainly successful with
linear problems. The difficulty of course lies in defining the product of generalized
functions. We saw in the previous section that multiplication of functions of the
same variable is not an invariant operation. The idea is then to define an invariant
operation which reduces to multiplication in particular coordinates.

More generally, the developed functional coordinate formalism offers a system-
atic approach for dealing with nonlinear equations in generalized functions. Namely,
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the terms in a nonlinear functional tensor equation represent tensors. Because of
that the change of coordinates is meaningful and can be used to extend nonlinear
operations to generalized functions.

Example. Consider a nonlinear equation with the term (ϕ(x))2. To interpret this
term as a functional tensor we write

ϕ(x) · ϕ(x) =

∫
δ(x− u)δ(x− v)ϕ(u)ϕ(v)dudv. (10.1)

Therefore, this term can be considered to be the convolution of the (1, 2)-tensor

cxuv = δ(x− u)δ(x− v) (10.2)

with the pair of strings ϕu = ϕ(u):

ϕ(x) · ϕ(x) = cxuvϕ
uϕv. (10.3)

With this identification we can now apply a coordinate transformation to make ϕ
singular at the expense of smoothing cxuv. In particular, we can transform ϕ into
the delta-function.

Example. Consider the equation
∫
k(x− y)

dϕt(x)

dt

dϕt(y)

dt
dxdy = 0, (10.4)

where ϕt(x) is an unknown function which depends on the parameter t and k(x, y)
is a smooth function on R2n.

Let us look for a solution in the form ϕt(x) = δ(x− a(t)). As

dϕt(x)

dt
= −∂δ(x− a(t))

∂xµ

daµ

dt
, (10.5)

we have after “integration by parts” the following equation:

∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a(t)

daµ(t)

dt

daν(t)

dt
= 0. (10.6)

We remark here that as explained in section 11, the formula (10.5) and the method
of “integration by parts” in (10.4) are valid. If the tensor field

gµν(a) ≡
∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a

(10.7)

is symmetric and positive definite, the equation (10.6) has only the trivial solution.
However, if gµν(a) is non-degenerate and indefinite, then there is a nontrivial solu-
tion. In particular, we can choose gµν to be the Minkowski tensor ηµν on space-time.
For this assume that x, y are space-time points and take

k(x, y) = e−
(x−y)2

2 , (10.8)
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where (x − y)2 = ηµν(x − y)µ(x − y)ν . Then we immediately conclude that gµν is
the Minkowski tensor ηµν . Solutions to (10.6) are then given by the null lines a(t).
Therefore, the original problem (10.4) has solutions of the form ϕt(x) = δ(x− a(t))
where a(t) is a null line.

Notice, that the obtained generalized functions ϕt are singular generalized solu-
tions to the nonlinear equation (10.4). Once again, these solutions become possible
because the kernel k(x, y) in (10.4) is a smooth function, so the convolution kxyϕ̇

xϕ̇y

is meaningful.

Example. Consider the equation

∫
e−

(x−y)2

2
dϕt(x)

dt

dϕt(y)

dt
dxdy = 1, (10.9)

where the metric on the space of variables is Euclidean: (x−y)2 = δµν(x−y)µ(x−y)ν .
Looking for solution in the form ϕt(x) = δ(x−a(t)) and performing “integration by
parts”, we obtain

δµν
daµ(t)

dt

daν(t)

dt
= 1. (10.10)

That is,
∥∥∥da(t)

dt

∥∥∥
Rn

= 1. Therefore, ϕt(x) = δ(x − a(t)), where the path a(t) has a

unit velocity vector at any t.

Let us apply a transformation ρ with kernel ρ(x, y) = e−(x−y)2 to the equation

∫
e−

(x−y)2

2
dδ(x− a(t))

dt

dδ(y − a(t))

dt
dxdy = 1. (10.11)

This yields

M

∫
δ(x− y)

de−(x−a(t))2

dt

de−(y−a(t))2

dt
dxdy = 1, (10.12)

where M is a constant. This is the same equation in the coordinates in which the
kernel of the metric is the delta function, while the solution given originally by the
delta-function becomes a smooth exponential function.

11 Embeddings of n-dimensional manifolds into Hilbert

spaces of functions

In this section we will use various dual Hilbert spaces H,H∗, where the elements of
H∗ are smooth functions and the metric on the dual space H is given by a smooth
on Rn ×Rn kernel k(x, y). Examples of such spaces were given in section 2.

Theorem 11.1 The space H described above contains the evaluation functionals
δ(x− a) for all a in Rn.
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Proof. Because k(x, y) is smooth, the sequence fL =
(

L√
π

)n
e−L2(x−a)2 is funda-

mental in H. As H is complete, fL converges to an element f in H. Therefore, fL

converges to f weakly in H as well. By Riesz theorem this is equivalent to saying
that (fL, ϕ) −→ (f, ϕ) for all ϕ ∈ H∗. At the same time, fL is a delta-converging
sequence. In particular, (fL, ϕ) −→ (δa, ϕ) for all ϕ ∈ H∗. The uniqueness of the
weak limit signifies then that fL converges to δa in H.

Theorem 11.2 If the space H∗ contains sufficiently many functions, the subset M
of all delta-functions in H forms a n-dimensional submanifold of H diffeomorphic
to Rn.

Proof. The map ω : a −→ δ(x − a) is a smooth from Rn into H. Assume that for
any two points a, b ∈ Rn there is a function ϕ ∈ H∗ such that δa(ϕ) 6= δb(ϕ). This is
true in particular if H∗ contains all C∞-functions of bounded support. In this case
the map ω is injective. The smooth injective map ω parametrizes the set M of all
delta-functions in H identifying M with a submanifold of H diffeomorphic to Rn.

Note that, although M is not a linear subspace of H, the diffeomorphism ω :
Rn −→M induces a linear structure on M . In fact, we can define linear operations
⊕,⊙ on M by ω(x+y) = ω(x)⊕ω(y) and ω(kx) = k⊙ω(x) for any vectors x, y ∈ Rn

and any number k.

Theorem 11.3 These operations are continuous in topology of H.

Proof.
∫
k(x, y)(λδ(x− a)− λkδ(x− ak)(λδ(y− a)− λkδ(y− ak)dxdy = λ2k(a, a)−

λλk(k(a, ak) + k(ak, a)) + λ2
kk(ak, ak) −→ 0 provided ak −→ a and λk −→ λ. The

continuity of addition is verified in a similar way.

By using the same method one can also derive topologically nontrivial spaces
M . For example, let H∗ be the Hilbert space of smooth functions on the interval
[0, 2π] which contains all smooth functions of bounded support in (0, 2π). Assume
further that

ϕ(n)(0) = ϕ(n)(2π) (11.1)

for all ϕ in H∗ and for all orders n of (one-sided) derivatives of ϕ. Consider the
dual space H of functionals in H∗ and assume that the kernel of the metric on H is
a smooth function.

Theorem 11.4. The subset M of delta-functions in H form a submanifold diffeo-
morphic to the circle S1.

Proof. The map ω : a −→ δ(θ − a) from (0, 2π) into H is C∞. It is also
injective, because H∗ contains sufficiently many functions to distinguish any two
delta-functions δ(x − a), δ(x − b) with a, b ∈ (0, 2π), a 6= b. Finally, the function-
als δ(θ), δ(θ − 2π) are identical on H∗ as

∫
δ(θ − 2π)ϕ(θ)dθ = ϕ(2π) = ϕ(0) =∫

δ(θ)ϕ(θ)dθ for all ϕ in H∗.
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More generally, a Hilbert space H∗ of functions on an n-dimensional manifold
can be identified with the space of functions on a subset of Rn. In fact, the manifold
itself is a collection of non-intersecting “pieces” of Rn “glued” together. Functions
on the manifold can be then identified with functions defined on the disjoint union
of all pieces and taking equal values at the points identified under “gluing”. As
a result, the dual space H of generalized functions “on” the manifold can be also
identified with the corresponding space of generalized functions “on” a subset of Rn.

This fact allows us to conclude that topologically different manifolds M can be
obtained by choosing an appropriate Hilbert space H of functions “on” a subset of
Rn and identifying M with the submanifold of H consisting of delta-functions. The
manifold structure on M is then induced by the inclusion of M into H and does
not have to be defined in advance. In particular, the “gluing conditions” like (11.1)
imposed on functions result in the corresponding “gluing” of the delta-functions and
of the appropriate subsets of Rn.

Moreover, the tangent bundle structure and the Riemannian structure on M can
be also induced by the embedding i : M −→ H. This embedding is natural in a
sense that the formalism of local coordinates on M turns out to be a “restriction”
to M of the developed functional coordinate formalism.

In fact, given vector X tangent to a path Φt in S at the point Φ0 and a differ-
entiable functional F on a neighborhood of Φ0 in S, the directional derivative of F
at Φ0 along X is defined by

XF =
dF (Φt)

dt

∣∣∣∣
t=0

. (11.2)

By applying the chain rule we have

XF = F ′(Φ)
∣∣
Φ=Φ0

Φ′
t

∣∣
t=0 , (11.3)

where F ′(Φ)|Φ=Φ0 : S −→ R is the derivative functional at Φ = Φ0 and Φ′
t|t=0 ∈ S

is the derivative of Φt at t = 0. Let eH be a functional basis on S. Writing (11.3)
in coordinates (S, e−1

H ) yields

XF =

∫
δf(ϕ)

δϕ(x)

∣∣∣∣
ϕ=ϕ0

ξ(x)dx, (11.4)

where ξ = ϕ′
t|t=0, ϕt = e−1

H Φt, and the linear functional δf(ϕ)
δϕ(x)

∣∣∣
ϕ=ϕ0

∈ H∗, is the

derivative functional F ′(Φ0) in the dual basis e∗H .
Let us select from all paths in H the paths with values in M . In the chosen

coordinates any such path ϕt : [a, b] −→M has the form

ϕt(x) = δ(x− a(t)) (11.5)

for some function a(t) taking values in Rn.
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Theorem 11.5 The expression (11.2) evaluated on appropriate functionals and on

a path (11.5) yields the standard expression ∂f(a)
∂aµ

∣∣∣
a=a(0)

daµ

dt

∣∣∣
t=0

for action of the

vector tangent to the path a(t) : [a, b] −→ Rn at t = 0 on differentiable functions f .

Proof. Assume that f is an analytic functional represented on a neighborhood of
ϕ0 = ϕt|t=0 = δa(0) in H by a convergent in H power series

f(ϕ) = f0 +

∫
f1(x)ϕ(x)dx+

∫ ∫
f2(x, y)ϕ(x)ϕ(y)dxdy + ... . (11.6)

Assume further that the function

f(a) = f(δ(x− a)) = f0 + f1(a) + f2(a, a) + ... (11.7)

is smooth on a neighborhood of a0 = a(0) (for example, f1 is a smooth function and
fk = 0 for k ≥ 2). Then on the path ϕt = δ(x− a(t)) we have

df(ϕt)

dt

∣∣∣∣
t=0

=
∂f(a)

∂aµ

∣∣∣∣
a=a(0)

daµ

dt

∣∣∣∣
t=0

. (11.8)

In particular, the expression on the right of (11.8) is the action of the n-vector
daµ

dt
∂

∂aµ tangent to the path a(t) on the smooth function f(a).

Assume once again that H is a real Hilbert space and let K : H ×H −→ R be
the metric on H given by a smooth kernel k(x, y). If ϕ = ϕt(x) = δ(x − a(t)) is a
path in M , then for the vector δϕ(x) tangent to the path at ϕ0 we have

δϕ(x) ≡ dϕt(x)

dt

∣∣∣∣
t=0

= −∇µδ(x− a)
daµ

dt

∣∣∣∣
t=0

. (11.9)

Here a = a(0) and derivatives are understood in a generalized sense. Therefore,

‖δϕ‖2
H =

∫
k(x, y)∇µδ(x− a)

daµ

dt

∣∣∣∣
t=0

∇νδ(y − a)
daν

dt

∣∣∣∣
t=0

dxdy. (11.10)

“Integration by parts” in the last expression gives

∫
k(x, y)δϕ(x)δϕ(y)dxdy =

∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a

daµ

dt

∣∣∣∣
t=0

daν

dt

∣∣∣∣
t=0

. (11.11)

Remark. Although the above manipulations with generalized functions are some-
what formal, they can be easily justified. In particular, from Theorem 11.1 we know

that as L −→ ∞, the sequence fL(x− a) =
(

L√
π

)n
e−L2(x−a)2 converges in norm in
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H to δ(x− a). Similarly, the sequence of the derivatives ∇µfL(x− a) converges to
∇µδ(x− a). Performing now the ordinary integration by parts in

∫
k(x, y)∇µfL(x− a)

daµ

dt

∣∣∣∣
t=0

∇νfL(y − a)
daν

dt

∣∣∣∣
t=0

dxdy (11.12)

and taking L to infinity we obtain the result (11.11).

By defining daµ

dt
|t=0 = daµ, we now have
∫
k(x, y)δϕ(x)δϕ(y)dxdy = gµν(a)da

µdaν , (11.13)

where

gµν(a) =
∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a

. (11.14)

As the functional K is symmetric, the tensor gµν(a) can be assumed to be

symmetric as well. If in addition ∂2k(x,y)
∂xµ∂yν

∣∣∣
x=y=a

is positive definite at every a, the

tensor gµν(a) can be identified with the Riemannian metric on an n-dimensional
manifold M given in local coordinates aµ.

Example. Consider the Hilbert space H with metric given by the kernel k(x,y) =

e−
1
2
(x−y)2 for all x,y ∈ R3. Using (11.14) and assuming (x−y)2 = δµν(x

µ−yµ)(xν−
yν) with µ, ν = 1, 2, 3, we immediately conclude that gµν(a) = δµν .

The resulting isometric embedding of the Euclidean space N = R3 into H is
illustrated in Figure 1. The cones in the figure represent delta-functions forming
the manifold M which we denote in this case by M3.

,,

Hilbert space picture Classical space picture

Isometric embedding

φ (x)=
t

Figure 1

The following theorem clarifies the embedding of M3 into the space H with the
metric given by e−

1
2
(x−y)2 .

Theorem 11.6 The manifold M3 is a submanifold of the unit sphere SH in H.
Moreover, the set M3 form a complete system in H. The elements of any finite
subset of M3 are linearly independent.
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Proof. Observe that the norm of any element δ(x−a) in H is equal to 1. Therefore,
the three dimensional manifold M3 is a submanifold of the unit sphere SH in H.

To show that the set M3 form a complete system in H we need to verify that
there is no non-trivial element of H orthogonal to every element of M3. Assume that
f is a functional in H such that

∫
e−

1
2
(x−y)2f(x)δ(y − u)dxdy = 0 for all u ∈ R3.

Then
∫
e−

1
2
(x−u)2f(x)dx = 0 for all u ∈ R3. Since the metric Ĝ : H −→ H∗ given

by the kernel e−
1
2
(x−y)2 is an isomorphism, we conclude that f = 0.

Assume now that
∑n

k=1 ckδ(x− ak) is the zero functional in H∗ and the vectors
ak ∈ R3 are all different. For any such finite set of vectors, the space H∗ contains
functions ϕk, k = 1, ..., n with supports containing one and only one of the points ak

each and so that no two supports contain the same point. Therefore the coefficients
ck must be all equal to zero, that is, the elements of any finite subset of M3 are
linearly independent.

Note that the set M3 is uncountable and that no two elements of M3 are orthog-
onal (although, provided |a− b| ≫ 1, the elements δ(x− a), δ(x− b) are “almost”
orthogonal).

The following two pictures help “visualizing” the embedding of M3 into H.
Under the embedding any straight line x = a0+at in R3 becomes a “spiral” ϕt(x) =
δ(x−a0−at) on the sphere SH through dimensions of H. One such spiral is shown
in Figure 2. The curve in Figure 2 goes through the tips of three shown linearly
independent unit vectors. Imagine that each point on the curve is the tip of a unit
vector and that any n of these vectors are linearly independent.

Figure 2

The manifold M3 is spanned by such spirals. Figure 3 illustrates the embedding
of M3 into H in light of this result.

Isometric embedding

, ,

Figure 3
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12 Riemannian metric on the unit sphere in L2 and on

the complex projective space CP
L2

In this section we apply the developed coordinate formalism to demonstrate that
solutions of the Schrödinger equation dϕt

dt
= −iĥϕt for a closed quantum system

described by the Hamiltonian ĥ are geodesics in the appropriate Riemannian metric
on the space of states of the system.

For this it will turn out to be convenient to use the index notation introduced
in section 4. Thus, a string-tensor T or rank (r, s) in the index notation will be
written as ta1...ar

b1...bs
. Assume that K̂ : H −→ H∗ defines an Hermitian inner product

K(ξ, η) = (K̂ξ, η) on a complex Hilbert space H of compex-valued functions ξ. Let
HR be the real Hilbert space which is the realization of H. Namely, HR is the space
of pairs of vectors X = (ξ, ξ) with multiplication by real numbers.

Since the inner product on H is Hermitian, it defines a real valued Hilbert metric
on HR by

KR(X,Y ) = 2ReK(ξ, η), (12.1)

for all X = (ξ, ξ), Y = (η, η) with ξ, η ∈ H. We will also use the “matrix” represen-
tation of the corresponding operator K̂R : HR −→ H∗

R:

K̂R =

[
0 K̂

K̂ 0

]
. (12.2)

In particular, we have

KR(X,Y ) = (K̂RX,Y ) = [ξ, ξ]K̂R

[
η
η

]
= 2Re(K̂ξ, η), (12.3)

where ξK̂η stands for the inner product (K̂ξ, η) and ξK̂η stands for its conjugate.
Let us agree to use the capital Latin letters A,B,C, ... as indices of tensors

defined on direct products of copies of the real Hilbert space HR and its dual. The
small Latin letters a, b, c, ... and the corresponding overlined letters a, b, c, ... will be
reserved for tensors defined on direct products of copies of the complex Hilbert space
H, its conjugate, dual and dual conjugate. A single capital Latin index replaces a
pair of lower Latin indices. For example, if X ∈ HR, then XA = (Xa, Xa), with Xa

representing an element of H and Xa = X
a
.

Consider now the tangent bundle over a complex string space S which we identify
here with a Hilbert space L2 of square-integrable functions. Let us identify all fibers
of the tangent bundle over L2 (i.e. all tangent spaces TϕL2, ϕ ∈ L2) with the
complex Hilbert space H described above. Let us introduce an Hermitian (0, 2)
tensor field G on the space L2 without the origin as follows:

G(ξ, η) =
(K̂ξ, η)

(ϕ,ϕ)L2

, (12.4)
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for all ξ, η in the tangent space TϕL2 and all points ϕ ∈ L2∗. Here L2∗ stands for
the space L2 without the origin.

The corresponding (strong) Riemannian metric GR on L2 is defined by

GR(X,Y ) = 2ReG(ξ, η), (12.5)

where as before X = (ξ, ξ) and Y = (η, η). In the matrix notation of (12.2) we have
for the operator ĜR : HR −→ H∗

R defining the metric GR:

ĜR =

[
0 Ĝ

Ĝ 0

]
, (12.6)

where Ĝ : H −→ H∗ defines the metric G.

In our index notation the kernel of the operator Ĝ will be denoted by g
ab

, so
that

g
ab

=
k

ab

‖ϕ‖2
L2

, (12.7)

where k
ab

is the kernel of K̂. From (12.6) we have for the components (ĜR)AB of

the metric ĜR:

(ĜR)ab = (ĜR)
ab

= 0, (12.8)

and

(ĜR)
ab

= g
ab
, (ĜR)ab = g

ab
. (12.9)

For this reason and with the agreement that gab stands for g
ab

we can denote the

kernel of ĜR by gAB. For the inverse metric we have

Ĝ−1
R =

[
0 Ĝ

−1

Ĝ−1 0

]
. (12.10)

Let the notation gab stand for the kernel of the inverse operator Ĝ−1 and let gab

stand for its conjugate gab. Then

(ĜR)ab = (ĜR)ab = 0, (12.11)

and

(ĜR)ab = gab, (ĜR)ab = gab. (12.12)

Accordingly, without danger of confusion we can denote the kernel of Ĝ−1
R by gAB.

Having the Riemannian metric GR on L2 we can define the compatible (Rie-
mannian, or Levi-Chevita) connection Γ by

2GR(Γ(X,Y ), Z) = dGRX(Y, Z) + dGRY (Z,X) − dGRZ(X,Y ), (12.13)
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for all vector fields X,Y, Z in HR. Here, for example, the term dGRX(Y, Z) denotes
the derivative of the inner product GR(Y, Z) evaluated on the vector field X. In
the given realization of the tangent bundle, for any ϕ ∈ L2 the connection Γ is
an element of the space L(HR, HR;HR). The latter notation means that Γ is an
HR-valued 2-form on HR ×HR. In our index notation the equation (12.13) can be
written as

2gABΓB
CD =

δgAD

δϕC
+
δgCA

δϕD
− δgCD

δϕA
. (12.14)

Here for any ϕ ∈ L2 the expression gABΓB
CD is an element of L(HR, HR, HR;R),

i.e., it is an R-valued 3-form defined by

gABΓB
CDX

CY DZA = GR(Γ(X,Y ), Z) (12.15)

for all X,Y, Z ∈ HR. Similarly, for any ϕ ∈ L2, the functional derivative δgAD

δϕC is an

element of L(HR, HR, HR;R) defined by

δgAD

δϕC
XCY DZA = dGRX(Y, Z). (12.16)

For any ϕ ∈ L2, by leaving vector Z out, we can treat both sides of (12.13) as
elements of H∗. Recall now that GR is a strong Riemannian metric. That is, for
any ϕ ∈ L2 the operator ĜR : HR −→ H∗

R is an isomorphism, i.e., Ĝ−1
R exists. By

applying Ĝ−1
R to both sides of (12.13) without Z we have in the index notation:

2ΓB
CD = gBA

(
δgAD

δϕC
+
δgCA

δϕD
− δgCD

δϕA

)
, (12.17)

where

ΓB
CDX

CY DΩB = (Ĝ−1
R (ĜRΓ(X,Y )),Ω). (12.18)

Formula (12.17) defines the connection “coefficients” (Christoffel symbols) of the
Levi-Chevita connection. From the matrix form of ĜR and Ĝ−1

R we can now easily
obtain

Γb
cd = Γ

b
cd =

1

2
gab

(
δgda

δϕc
+
δgca

δϕd

)
, (12.19)

Γb
cd

= Γ
b
cd =

1

2
gab

(
δgca

δϕd
− δg

cd

δϕa

)
, (12.20)

Γb
cd = Γ

b
cd =

1

2
gab

(
δgda

δϕc
− δgcd

δϕa

)
, (12.21)

while the remaining components vanish. To compute the coefficients, let us write
the metric (12.7) in the form

g
ab

=
k

ab

δuvϕuϕv
, (12.22)
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where δuv ≡ δ(u − v) is the L2 metric in the index notation. We then have for the
derivatives:

δg
ab

δϕc
= −kab

δcvϕ
v

‖ϕ‖4
L2

, (12.23)

and
δg

ab

δϕc
= −kab

δucϕ
u

‖ϕ‖4
L2

. (12.24)

Using (12.19)-(12.21) we can now find the non-vanishing connection coefficients

Γb
cd = Γ

b
cd = −

(
δb
dδcv + δb

cδdv

)
ϕv

2 ‖ϕ‖2
L2

, (12.25)

Γb
cd

= Γ
b
cd = −

(
δb
cδud

− kabk
cd
δua

)
ϕu

2 ‖ϕ‖2
L2

, (12.26)

and

Γb
cd = Γ

b
cd = −

(
δb
dδuc − kabkdcδua

)
ϕu

2 ‖ϕ‖2
L2

. (12.27)

Consider now the unit sphere SL2 : ‖ϕ‖L2
= 1 in the space L2. Let Â be

a (possibly unbounded) injective Hermitian operator defined on a set D
(
Â

)
and

with the image Â (D) ≡ R
(
Â

)
. Here we assume for simplicity that D

(
Â

)
⊂

R
(
Â

)
and that both D

(
Â

)
and R

(
Â

)
are dense subsets of L2. Let us define the

inner product (f, g)H of any two elements f, g in R
(
Â

)
by the formula (f, g)H ≡

(
Â−1f, Â−1g

)

L2

=

((
ÂÂ∗

)−1
f, g

)
. By completing R

(
Â

)
with respect to this

inner product we obtain a Hilbert space H. Notice that Â is bounded in this norm
and can be therefore extended to the entire space L2 and becomes an isomorphism
from L2 onto H. We will denote such an extension by the same symbol Â. Let
K̂ = (ÂÂ∗)−1, K̂ : H −→ H∗ be the metric operator on H. As before, we define
the Riemannian metric on L2∗ by

GR(X,Y ) =
2Re(K̂ξ, η)

(ϕ,ϕ)L2

, (12.28)

where X = (ξ, ξ), Y = (η, η). Assume that the sphere SL2 ⊂ L2∗ is furnished
with the induced Riemannian metric. Consider now the vector field Aϕ = −iÂϕ
associated with the operator Â. The integral curves of this vector field are solutions

of the equation dϕt

dt
= −iÂϕt. These solutions are given by ϕτ = e−iÂτϕ0. Since

e−iÂτ denotes a one-parameter group of unitary operators, the integral curve ϕτ
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through a point ϕ0 ∈ SL2 stays on SL2 . In particular, the vector field Aϕ is tangent
to the sphere. In other words, the operator −iÂ maps points on the sphere into
vectors tangent to the sphere.

We claim now that the curves ϕτ = e−iÂτϕ0 are geodesics on the sphere in the
induced metric. That is, they satisfy the equation

d2ϕτ

dτ2
+ Γ

(
dϕτ

dτ
,
dϕτ

dτ

)
= 0. (12.29)

In fact, using (12.25)-(12.27) and collecting terms, we obtain

Γb
CD

dϕC
τ

dτ

dϕD
τ

dτ
=

(
K̂ dϕτ

dτ
, dϕτ

dτ

)
Â2ϕb

‖ϕτ‖2
L2

. (12.30)

The expression for Γb
CD

dϕC
τ

dτ
dϕD

τ

dτ
turns out to be the complex conjugate of (12.30).

Now, the substitution of ϕτ = eiÂτϕ0 and K̂ =
(
ÂÂ∗

)−1
into the right hand side

of (12.30) yields Â2ϕ. At the same time, d2ϕτ

dτ2 = −Â2ϕ and therefore the equation

(12.29) is satisfied. That is, the curves ϕτ = e−iÂτϕ0 are geodesics in the metric
(12.28) on L2∗. Since these curves also belong to the sphere SL2 and the metric on
the sphere is induced by the embedding SL2 −→ L2∗, we conclude that the curves
ϕτ are geodesics on SL2 .

Assume in particular that Â is the Hamiltonian ĥ of a closed quantum system.
Then the above model demonstrates that, in the appropriate Riemannian metric on
the unit sphere SL2 , the Schrödinger evolution of the system is a motion along a
geodesic of SL2 . For a closely related metric on SL2 this result was obtained earlier
in [8] by means of variational principle.
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